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Summary

Integrated electronic systems are more and more used in a wide number of appli-
cations and environments, ranging from mobile devices to safety-critical products.
This wide distribution is mainly due to the miniaturization surrounded by an increas-
ing computing power of semiconductor devices. However, there are many complex
and arduous challenges associated to this phenomenon.

One of these challenges is the reliability of electronic systems. Nowadays, several
research e↵orts are aimed at improving the semiconductors reliability. Manufactur-
ing processes, aging phenomena of components and environmental stress may cause
internal permanent defects and damages during the lifetime of a device; in the other
side, the environment in which these devices are employed could introduce soft errors
(i.e., errors that do not damage the device but a data during the computation) in
their internal circuitry, thus compromising the correct behavior of the whole system.
Consequently, in order to guarantee product quality and consumer satisfaction, it
is necessary to discover faults as soon as possible (both, in the manufacturing pro-
cess and during the devices lifetime); moreover, it is equally important to provide
the electronic systems with fault tolerance equipments aimed to assure a correct
functioning in every condition.

Despite the reliability requirements, modern electronic systems require also an
increasing computational power to satisfy the customers needs. In order to face to
this demand, in the last two decades di↵erent powerful computational devices have
been designed and developed. They are mainly based on architectures allowing the
execution of multiple computations in parallel at the same time.

Among the others, the Very Long Instruction Word (VLIW) processors are a
particular type of multicore and reconfigurable processors; they have been devel-
oped to perform several operations in parallel, where the scheduling of the opera-
tions themselves is completely demanded at the compiler: VLIWs are suitable for
systems requiring high computational performance maintaining a reduced power
consumption. Another interesting type of multicore computational units are the
General Purpose Graphics Processing Units (GPGPUs): their very high compu-
tational power, combined with low cost, reduced power consumption, and flexible
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development platforms are pushing their adoption not only for graphical applica-
tions, but also in the High Performance Computing (HPC) market and in embedded
devices. Moreover, GPGPUs are increasingly used in some safety-critical embedded
domains, such as automotive, avionics, space and biomedical.

The main in common feature of VLIWs and GPGPUs is that they can be used
in a System-on-Chip (SoC) as computational co-processors: in a typical SoC, in
fact, the main Central Processing Unit (CPU) is in charge of demand and supervise
the execution of data intensive operations to these architectures; in this way, the
workload of the CPU itself is lower. As an example, in the NASA labs, VLIWs have
been evaluated to e�ciently perform image analysis on board a Mars rover for future
space missions, while the main CPU of the system is available to perform other real-
time control operations. In the other hand, the Advanced Driver Assistance Systems
(ADASs) which are increasingly common in cars, uses GPGPUs or GPGPU-like
devices to analyze images (or radar signals) coming from external cameras and
sensors to detect possible obstacles, requiring the automatic intervention of the
breaking system.

In this PhD thesis, several new techniques have been developed with the common
goal of improving the reliability characteristics of multicore processing units. More
in particular, considering VLIW processors, new test and diagnostic methods have
been studied and implemented in order to detect permanent faults; they are mainly
based on the Software-Based Self-Test (SBST) technique. The final goal is to reduce
the time required to perform the test of a generic VLIW processor, and to e�ciently
localize the faulty module. On the other hand, the present dissertation focus on
the e↵ects introduced by soft errors in GPGPU devices; this works have been done
through the execution of several neutron radiation tests. At the end of these analysis,
new techniques finalized to the fault tolerance enhancement of GPGPU applications
have been proposed.

As industrial case, the validation of a programmable timing multicore co-processor
module (i.e., the Generic Timer Module manufactured by Bosch) used in the today
automotive Electronic Control Units (ECUs) has been designed and implemented.
More in particular, an FPGA-based validation platform has been developed, where
one of its main feature is the ability to e�ciently verify the behavior of the module
under test, thus ensuring a correct implementation of the software running on it.
This work has been done in collaboration with General Motors Powertrain Europe
(site of Torino, Italy).

By implementing the techniques presented in this PhD thesis, several interesting
data about the reliability of the treated devices have been acquired; they are shown
in 15 papers, published in conference proceedings, book chapters, and international
journals.
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Chapter 1

Introduction: reliability in parallel
architectures and System-on-Chip

Integrated electronic systems are more and more used in a wide number of appli-
cations and environments, ranging from mobile devices to safety-critical products.
In the last three decades, in fact, information technology has been integrated in
most of the devices used every day by million of people. This wide distribution
phenomenon is mainly influenced by a continous miniaturization surrounded by an
increasing computing power of semiconductor devices.

Originally expressed by Gordon Moore in 1965, Moore’s Law states that the
number of transistors on an integrated circuit doubles every one to two years. The
result over the last fifty years has been incredible improvements in computational ca-
pabilities, communications, entertainment, and all aspects of electronic technology,
all at ever lower cost. Literally, Moore’s Law has brought about a radical change in
society, with huge implications for the everyday life of people [1].

Alongside to this scenario, there are many complex and arduous challenges. One
of these is the reliability of the electronic systems. Nowadays, several research ef-
forts are aimed at improving the semiconductors reliability. Continuing decrease in
the feature size of transistors leads to increases in susceptibility to permanent and
transient faults: the technology scaling down to the nanometer domain, shrinking
transistor sizes, lower power voltages, and higher operating frequencies seriously
a↵ect the reliability of CMOS VLSI circuits [2][3]. In general, the reliability of
semiconductor devices may depend on manufacturing processes, aging phenomena
of components, and environmental stress, that could be source of internal perma-
nent defects and damages during the lifetime of a device; in the other side, the
environment in which these devices are employed could introduce soft errors (i.e.,
errors that do not damage the device but a data during the computation) in their
internal circuitry, thus compromising the correct behavior of the whole system [4].
Consequently, in order to guarantee product quality and consumer satisfaction, it
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1 – Introduction: reliability in parallel architectures and System-on-Chip

is necessary to discover faults as soon as possible (both, in the manufacturing pro-
cess and during the devices lifetime); moreover, it is equally important to provide
the electronic systems with fault tolerance mechanism aimed to assure a correct
functioning in every condition.

Beside the reliability challenge, the power consumption is another parameter
that has to be considered designing innovative computational units and System-
on-Chip (SoC). To face the power problem, in the last two decades chip designers
have resorted to multicore architectures, that provide a way to continue improving
performance with a low increase in the power consumption [4] (if compared with
the power consumption required by a further increase of the functioning frequency).
An advantage of this phenomenon is that multiprocessors devices are inherently
suitable for reliability, due to the availability of several computational units on
which redundant computations can be executed in order to error detection and/or
correction.

Among the various multicore systems developed until now, the Very Long In-
struction Word (VLIW) processors and the General Purpose Graphic Processing
Units (GPGPUs) are of significant interest. Both these architectures are based on
a lot of parallel computational units able to perform a huge number of operations
in parallel at the same time. One of the main in common feature of VLIWs and
GPGPUs is that they can be used in a SoC as computational co-processors: the
Central Processing Unit (CPU) of the system is in charge of demand and super-
vise the execution of data intensive operations to these architectures, lowering its
workload.

In this PhD thesis, innovative techniques are proposed addressing di↵erent device
scenario, where the main goal is to improve the reliability features of the most used
parallel architectures today embedded in SoC as computational co-processing units,
i.e., the VLIW processors and the GPGPUs. As industrial case, the validation
of a programmable timing multicore co-processor module (i.e., the Generic Timer
Module by Bosch) used in the today automotive Electronic Control Units (ECUs)
has been designed and implemented. More in particular, an FPGA-based validation
platform has been developed, where one of its main feature is the ability to e�ciently
verify the behavior of the module under test, thus ensuring a correct implementation
of the software running on it. This work has been done in collaboration with General
Motors Powertrain Europe (site of Torino, Italy).

By implementing all the techniques presented in this PhD thesis, several inter-
esting data about the reliability of the treated devices have been acquired; these
data are presented in 15 papers published in conference proceedings, book chapters,
and international journal.

The rest of this PhD thesis is structured as follow: the other four sections of
this introductory chapter present an overview on the addressed devices (from a
reliability point of view); in the Chapter 2 the reliability characterization and the

2



1 – Introduction: reliability in parallel architectures and System-on-Chip

State-Of-The-Art are presented; in Chapter 3, instead, the proposed SBST and
diagnostic methods for VLIW processors are shown, along with some experimental
results and the activity conclusions; in Chapter 4 the reliability works developed in
this PhD thesis related to GPGPU devices are presented; in Chapter 5 the industrial
case treated in this PhD thesis is described; finally, the Chapter 6 concludes this
dissertation presenting the general conclusions.

1.1 Parallel architectures: di↵erent needs, di↵er-
ent devices

As general concept, modern electronic systems require an increasing computational
power. In order to face with this need, in the last two decades, di↵erent powerful
computational devices have been designed and developed. They are mainly based
on architectures allowing the execution of multiple computations in parallel at the
same time. In the past, applications could simply rely on system performance im-
provements from advances in semiconductor manufacturing and single-thread archi-
tecture. Today, nearly all major microprocessor vendors o↵er multicore processors.
Instead of scaling performance with increased frequency, multicore processors o↵er
higher performance through more processing cores. As main motivation behind this
phenomenon there are the e↵orts to reduce the power consumption and the thermal
dissipation.

Multicore processors di↵er from traditional processors in many ways, such as
higher core counts, simpler core architecture, and more elaborate on-chip intercon-
nections. The increase in core count and compute density is the most notable di↵er-
ence between multicore architectures and traditional single-thread architectures [5].
As a consequence of this radical change, the applications running on new multicore
devices have to be parallelized to fully exploit the computational power provided.

The VLIW processors have been demonstrated to be a viable solution especially
for applications demanding high performance while exposing a considerable amount
of parallelism, such as several Digital Signal Processing (DSP) algorithms used in
multimedia and communication applications [6]. In VLIW architectures, the man-
agement of the parallelization of the applications is completely demanded at the
software compiler; in fact, unlike superscalar processors, VLIW processors do not
include any significant control logic, since instruction scheduling is completely per-
formed at compile time. This implies that the hardware complexity is far lower than
for superscalar processors, while the compilation steps become more complicated.
VLIWs o↵er the possibility to run a typical sequential program in a multicore ar-
chitecture without changing the original source code; the compiler, in fact, is in
charge of understanding and exploiting as much as possible the Instruction Level

3
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Parallelism (ILP) intrinsic of the software application. Moreover, VLIW processors
are characterized by a pipelined architecture with multiple Functional Units (FUs).
Considering the instruction format, VLIW processors are characterized by group-
ing several instructions (named micro-instructions) into one large macro-instruction
(also called bundle), where each micro-instruction within the bundle is executed in
parallel distinct computational units, referred to as Computational Domains (CD)
[7].

Recently, new devices known as GPGPUs made their appearance on the market.
Their very high computational power, combined with low cost, reduced power con-
sumption, and flexible development platforms are pushing their adoption not only
for graphical applications, but also in the High Performance Computing (HPC) and
in the embedded systems markets [8]. This phenomenon is motivated by the fact
that GPGPUs o↵er tremendous computational power by running a huge number
threads concurrently. For example, the NVIDIA GPU Kepler [9] allows concurrent
execution of over 30,000 active threads and delivers an aggregate performance of 4.6
teraflops on single-precision floating-point computation [10]. In order to manage the
scheduling of the threads execution, the GPGPUs contain dedicated hardware mod-
ules (i.e., the thread schedulers). The programming model is based on the Single
Instruction Multiple Data (SIMD), where the user has to design ah ad-hoc software
compliant with the SIMD paradigm.

As industrial case, in this PhD thesis the reliability of a new multicore timer co-
processor, today used in automotive applications, has been addressed. The name of
this module is Generic Timer Module (GTM), and it has been developed by Bosch
Semiconductors [11]. This computational unit has been designed with the aim of
executing the tasks typically related to the management of the fuel injection in a
thermal engine. The GTM can be seen as an autonomous co-processor; in fact, it
contains several hardware sub-modules allowing it to directly manage the engine fuel
injection signals without any interaction with the main control system (it unloads
the CPU from handling Interrupt Service Requests (ISR) as much as possible), thus
ensuring the real-time constraints required in automotive ECU. More in particular,
the GTM is composed of several independent parallel computational units that could
be programmed to e�ciently manage di↵erent real-time tasks in parallel.

1.2 Test methods for VLIW processors

VLIWs are today used in several data intensive applications; they are also employed
in mission critical systems. As an example, the processor Tilera TILE64, composed
of several VLIW cores, has been evaluated (in the Jet Propulsion Lab., California
Institute of Technology, Pasadena, CA, USA) to e�ciently perform image analysis
on-board a Mars rover, in support of autonomous scientific activities [12][13]. Given
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these motivations, test methods are required, in order to discover the presence of
permanent faults (both at the start-up than during the operational life) in VLIW
processors.

In literature few test approaches have been proposed aimed to properly test
VLIW processors against permanent faults. In this PhD thesis the generation of
e↵ective test programs for the whole VLIW processor is addressed, characterized by
minimal duration, minimal size, and maximal fault coverage. The proposed method
is mainly based on the Software-Based Self-Test (SBST) approach [14], and it starts
from existing functional test algorithms developed for each single FU type embedded
into the processor (e.g., ALUs, adders, multipliers, memory units). Although the
characteristic of the FUs used within a VLIW processor are similar to those used in
traditional processors, generating optimized code to e↵ectively test these units is not
a trivial task: in fact, by exploiting the intrinsic parallelism of VLIW processors it is
theoretically possible to reduce the increase in duration and size of the test programs
when the VLIW processor size grows. For example, testing the ALUs in the di↵erent
Computational Domains can be performed in parallel, forcing them to perform the
required computations in parallel at the same clock cycle. However, generating an
optimized test program with minimal size and duration may require a significant
manual e↵ort, taking into account both the test algorithms for each FU and the
specific VLIW processor configuration. The proposed test generation procedure
provides an automatic solution for optimized test program generation, once the
processor configuration and the test algorithms for each FU are known. VLIW
processors do not include any specially designed hardware module (as it happens for
other processor types), but are rather based on a combination of common Functional
Units: exploiting this characteristic, our solution allows test program generation and
optimization to be performed autonomously and automatically, without any manual
e↵ort. The test programs generated by the proposed method are highly optimized
and exploit the VLIW processor features in order to minimize the test time and the
test program size [7].

1.3 Fault tolerance enhancement for GPGPUs

Reliability is a big issue for GPGPU cores. While in their original application
domain (i.e., video processing) wrong pixels caused by either soft or hard errors
have a negligible e↵ect on the user experience, when GPGPUs are exploited in
HPC applications such as financial or scientific computations, correctness and high
dependability become a primary requirement [15]. Moreover, the dependability
requirements are the same if GPGPUs for embedded systems are considered: the
Advanced Driver Assistance Systems (ADASs) which are increasingly common in
cars, uses GPGPUs or GPGPU-like devices to analyze images (or radar signals)

5



1 – Introduction: reliability in parallel architectures and System-on-Chip

coming from external cameras and sensors to detect possible obstacles, requiring
the automatic intervention of the breaking system.

In literature, several issues about the reliability of GPGPUs have been raised
[16]. Given their high degree of parallelism, many assume that GPGPUs could in-
trinsically provide a good degree of fault tolerance; however, their size and complex-
ity could make them particularly sensible to soft errors. Moreover, while hardening
techniques already exist for systems based on traditional CPUs, similar solutions for
GPGPU-based systems are still in their infancy [17]. The programming paradigm
adopted by GPUs (i.e., SIMD) can provide some advantages when designing hard-
ening strategies, but requires e↵ective solutions to combine detection and correction
capabilities with the required high performance characteristics. When assessing the
GPGPUs reliability, a commonly adopted solution is performing radiation experi-
ments with accelerated particles, counting the number of errors they trigger.

The main topic of the research work presented in this PhD thesis, in the GPGPUs
reliability context, is focused on investigating the sensitivity to soft-errors induced
by terrestrial radiation e↵ects. This evaluation has been performed through three
di↵erent neutron-based radiation tests; they have been executed in the VESUVIO
lab at the ISIS facility (Didcot, UK), and in the LANSCE lab at Los Alamos Neutron
Science Center (Los Alamos, USA). The goals of this research activity are mainly
three: initially, an evaluation of the radiation sensitivity of GPGPUs memories has
been performed; then, several traditional soft error hardening techniques have been
applied at di↵erent GPGPU benchmark algorithms, in order to assess the validity
of these methods; finally, an analysis aimed at providing data about the reliability
of di↵erent GPGPUs configuration is proposed. The final goal of the latter activity
is to provide at the designers of GPGPU applications (running in safety-critical
environments ) a set of guidelines to improve their reliability against soft errors.

1.4 Validation and test of automotive timing mul-
ticore co-processor module

The today automotive development processes are characterized by an increasing
complexity in mechanic and electronic. However, electronic devices have been the
major innovation driver for the automotive systems in the last decade [18]. In
this context, the requirements in terms of comfort and safety lead to an increasing
number of on-vehicle embedded systems, with more and more software-dependent
solutions using several distributed Electronic Control Units (ECUs). Sophisticate
engine control algorithms require performance enhancement of microprocessors to
satisfy real-time constraints [19]. Parallel architectures are a promising solution to
improve performances without an huge increase of power consumption. Moreover,
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the code generation, the verification, and the validation of the code itself, become key
part in the automotive domain: the software component development processes have
to be as e�cient and e↵ective as possible. Moreover, without a reliable validation
procedure, the automotive embedded software can lead to a lot of errors and bugs,
decreasing the quality and the reliability of the applications.

Electronic devices managing the fuel injection in today engines have a key role,
in order to guarantee e�cient and powerful vehicles. Within this context, in this
PhD thesis an e�cient FPGA-based platform to test and validate a multicore timing
co-processor (i.e., the GTM, introduced in the previous section) is presented. This
platform is a sort of embedded validation platform to verify the correct behavior
of the module under test. The high flexibility, combined with the capability of
extreme precise measurements, make the platform very suitable for the developers
of automotive applications during the parallel software development.
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Chapter 2

Reliability background

Reliability is the predisposition of a product or system to perform the tasks for which
it has been designed without failures, respecting its specified performance limits for a
specified time, and in its life-cycle environment. Reliability characterization refers in
general to all methods and procedures to measure how reliable a device is [20, 21, 22].

In this chapter, the reliability definition (within the electronic systems depend-
ability domain) is introduced, along with other terms commonly used in this research
field; then, several state-of-the-art techniques and method addressing the related re-
liability enhancements (for the devices treated in this PhD thesis) are presented.

2.1 Dependablity and related definitions

In general, the dependability of a computing system is the ability to deliver ser-
vices that can be trusted in a justifiable way. Dependability is a comprehensive
term used to describe the availability performance and its influencing factors: the
reliability performance, the maintainability performance and maintenance support
performance. As shown in the dependability tree proposed by Avizienis et al. in
[20, 21](Figure 2.1), the concept of dependability consists of three main parts: the
threats to, the attributes of, and the means by which dependability is attained.

2.1.1 The threats: faults, errors, and failures

An error is that part of the system state that may cause a subsequent failure: a
failure occurs when an error reaches the service interface and alters the service
itself. A fault is the hypothetical or established cause of an error. A fault is said
”active” when it produces an error; otherwise, a fault without any related error is
said ”latent”. Moreover, a system does not always fail in the same way: the failure
modes describe the ways in which a system can fail [21].
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2

Schneider 3. Seminal work on software fault tolerance was initiated by B. Randell 4, later it was

complemented by N-version programming 5.

The formation of the IEEE-CS TC on Fault-Tolerant Computing in 1970 and of IFIP WG 10.4

Dependable Computing and Fault Tolerance in 1980 accelerated the emergence of a consistent set of

concepts and terminology. Seven position papers were presented in 1982 at FTCS-12 in a special

session on fundamental concepts of fault tolerance, and J.-C. Laprie formulated a synthesis in 1985 6.

Further work by members of IFIP WG 10.4, led by J.-C. Laprie, resulted in the 1992 book

Dependability: Basic Concepts and Terminology (Springer-Verlag), in which the English text was also

translated into French, German, Italian, and Japanese.

In this book, intentional faults (malicious logic, intrusions) were listed along with accidental faults

(physical, design, or interaction faults). Exploratory research on the integration of fault tolerance and

the defenses against deliberately malicious faults, i.e., security threats, was started in the mid-80’s 7-9.

The first IFIP Working Conference on Dependable Computing for Critical Applications was held in

1989. This and the six Working Conferences that followed fostered the interaction of the dependability

and security communities, and advanced the integration of security (confidentiality, integrity and

availability) into the framework of dependable computing 10.

THE DEFINITIONS OF DEPENDABILITY

A systematic exposition of the concepts of dependability consists of three parts: the threats to, the

attributes of, and the means by which dependability is attained, as shown in Figure 1.

DEPENDABILITY ATTRIBUTES

AVAILABILITY 
RELIABILITY
SAFETY
CONFIDENTIALITY
INTEGRITY
MAINTAINABILITY

FAULT PREVENTION
FAULT TOLERANCE
FAULT REMOVAL
FAULT FORECASTING

MEANS

THREATS
FAULTS
ERRORS
FAILURES

Figure 1 - The dependability tree

Computing systems are characterized by five fundamental properties: functionality, usability,

performance, cost, and dependability. Dependability of a computing system is the ability to deliver

service that can justifiably be trusted. The service delivered by a system is its behavior as it is perceived

by its user(s); a user is another system (physical, human) that interacts with the former at the service
interface. The function of a system is what the system is intended to do, and is described by the

functional specification. Correct service is delivered when the service implements the system

function. A system failure is an event that occurs when the delivered service deviates from correct

service. A failure is thus a transition from correct service to incorrect  service , i.e., to not

implementing the system function. The delivery of incorrect service is a system outage. A transition

from incorrect service to correct service is service restoration. Based on the definition of failure, an

Figure 2.1. The dependability tree, proposed by Avizienis et al. in [20, 21].

Faults and their sources are several: their classification, according to six major
criteria proposed by Avizienis et al. in [20, 21], is presented in Figure 2.2. Con-
sidering the research activities described in this PhD thesis, the persistence is an
important criterion, discriminating which reliability method has to be implemented
in the electronic systems domain. For example, in case of permanent fault (i.e.,
hardware malfunction that always occurs when particular conditions exist), the sys-
tem has to detect it (by means of testing techniques), localize the fault itself (or the
module containing it) through diagnostic procedures, and finally avoid the usage
of the faulty module or of the complete system, substituting it with a spare one.
In the other hand, a transient fault is a kind of fault that does not damage the
device: alpha and beta particles from packaging material and/or neutrons from cos-
mic rays can invert a bit in SRAM cell, dynamic latch, or gate. This phenomenon
has become relevant in the last decade, due to the increasing number of transistors
combined with a decreasing feature size of the transistors themselves, and a reduced
chip voltages and noise margins.

Finally, the errors prodced by intermittent faults (Figure 2.3) are usually called
soft errors; the intermittent faults are the result of a class of faults composed
of elusive developmental faults and transient physical faults.

2.1.2 The attributes (focus on reliability)

The most important attributes of the dependability definition addressed in this PhD
thesis are reliability, availability, and safety.

In the IEEE Standard Computer Dictionary the reliability has been defined as
”the ability of a system or component to perform its required functions under stated
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4

minor vs. ordinary vs. catastrophic errors. An error is detected if its presence is indicated by an error
message or error signal. Errors that are present but not detected are latent errors.

Faults and their sources are very diverse. Their classification according to six major criteria is presented

in Figure 3. It could be argued that introducing phenomenological causes in the classification criteria of

faults may lead recursively to questions such as ‘why do programmers make mistakes?’, ‘why do

integrated circuits fail?’ Fault is a concept that serves to stop recursion. Hence the definition given:

adjudged or hypothesized cause of an error. This cause may vary depending upon the viewpoint that is

chosen: fault tolerance mechanisms, maintenance engineer, repair shop, developer, semiconductor

physicist, etc.

PERSISTENCE
PERMANENT FAULTS

TRANSIENT FAULTS

HARDWARE FAULTS

SOFTWARE FAULTS
DOMAIN

NATURAL FAULTS

HUMAN-MADE FAULTS
PHENOMENOLOGICAL
CAUSE

SYSTEM BOUNDARIES
INTERNAL FAULTS

EXTERNAL FAULTS

PHASE OF CREATION 
OR OCCURENCE

DEVELOPMENTAL FAULTS

OPERATIONAL FAULTS

FAULTS

ACCIDENTAL, OR  NON-MALICIOUS DELIBERATE ,FAULTS

DELIBERATELY MALICIOUS FAULTS
 INTENT

Figure 3 - Elementary fault classes

Combining the elementary fault classes of figure 3 leads to the tree of the upper part of figure 4. The

leaves of the tree are gathered into three major fault classes for which defenses need to be devised:

design faults, physical faults, interaction faults. The boxes of figure 4 point at generic illustrative

fault classes.

Non-malicious deliberate faults can arise during either development or operation. During development,

they result generally from tradeoffs, either a) aimed at preserving acceptable performance and

facilitating system utilization, or b) induced by economic considerations; such faults can be sources of

security breaches, in the form of covert channels. Non-malicious deliberate interaction faults may result

from the action of an operator either aimed at overcoming an unforeseen situation, or deliberately

violating an operating procedure without having realized the possibly damaging consequences of his or

her action. Non-malicious deliberate faults share the property that often it is recognized that they were

faults only after an unacceptable system behavior, thus a failure, has ensued; the specifier(s), designer(s),

implementer(s) or operator(s) did not realize that the consequence of some decision of theirs was a

fault.

Malicious faults fall into two classes: a) malicious logics 11, that encompass developmental faults such

as Trojan horses, logic or timing bombs, and trapdoors, as well as operational faults (with respect to the

given system) such as viruses or worms , and b) intrusions. There are interesting and obvious

similarities between an intrusion that exploits an internal fault and a physical external fault that

Figure 2.2. Elementary fault classes, proposed by Avizienis et al. in [20, 21].

requests, that occur rarely and can be very difficult to
reproduce [23]. Other examples of elusive faults are:

. “pattern sensitive” faults in semiconductor mem-
ories, changes in the parameters of a hardware
component (effects of temperature variation, delay
in timing due to parasitic capacitance, etc.).

. conditions—affecting either hardware or software
—that occur when the system load exceeds a certain
level, causing, for example, marginal timing and
synchronization.

The similarity of the manifestation of elusive develop-
ment faults and of transient physical faults leads to both
classes being grouped together as intermittent faults.
Errors produced by intermittent faults are usually termed
soft errors. Fig. 13. summarizes this discussion.

Situations involving multiple faults and/or failures are
frequently encountered. System failures often turn out on
later examination to have been caused by errors that are due
to a number of different coexisting faults. Given a system
with defined boundaries, a single fault is a fault caused by
one adverse physical event or one harmful human action.
Multiple faults are two or more concurrent, overlapping, or
sequential single faults whose consequences, i.e., errors,
overlap in time, that is, the errors due to these faults are
concurrently present in the system. Consideration of multi-
ple faults leads one to distinguish 1) independent faults,
that are attributed to different causes, and 2) related faults,
that are attributed to a common cause. Related faults
generally cause similar errors, i.e., errors that cannot be
distinguished by whatever detection mechanisms are being
employed, whereas independent faults usually cause
distinct errors. However, it may happen that independent
faults (especially omissions) lead to similar errors [6], or
that related faults lead to distinct errors. The failures caused
by similar errors are common-mode failures.

Three additional comments, about the words, or labels,
“threats,” “fault,” “error,” and “failure:”

1. The use of threats, for generically referring to faults,
errors, and failures has a broader meaning than its
common use in security, where it essentially retains
it usual notion of potentiality. In our terminology, it
has both this potentiality aspect (e.g., faults being
not yet active, service failures not having impaired
dependability), and a realization aspect (e.g., active
fault, error that is present, service failure that
occurs). In security terms, a malicious external fault
is an attack.

2. The exclusive use in this paper of faults, errors, and
failures does not preclude the use in special
situations of words which designate, briefly and
unambiguously, a specific class of threat; this is
especially applicable to faults (e.g., bug, defect,

deficiency, flaw, erratum) and to failures (e.g.,
breakdown, malfunction, denial-of-service).

3. The assignment made of the particular terms fault,
error, and failure simply takes into account common
usage: 1) fault prevention, tolerance, and diagnosis,
2) error detection and correction, 3) failure rate.

4 DEPENDABILITY, SECURITY, AND THEIR
ATTRIBUTES

4.1 The Definitions of Dependability and Security

In Section 2.3, we have presented two alternate definitions
of dependability:

. the original definition: the ability to deliver service
that can justifiably be trusted.

. an alternate definition: the ability of a system to
avoid service failures that are more frequent or more
severe than is acceptable.

The original definition is a general definition that aims to
generalize the more classical notions of availability, relia-
bility, safety, integrity, maintainability, etc., that then
become attributes of dependability. The alternate definition
of dependability comes from the following argument. A
system can, and usually does, fail. Is it however still
dependable? When does it become undependable? The
alternate definition thus provides a criterion for deciding
whether or not, in spite of service failures, a system is still to
be regarded as dependable. In addition, the notion of
dependability failure, that is directly deduced from that
definition, enables the establishment of a connection with
development failures.

The definitions of dependability that exist in current
standards differ from our definitions. Two such differing
definitions are:

. “The collective term used to describe the availability
performance and its influencing factors: reliability
performance, maintainability performance and
maintenance support performance” [31].

. “The extent to which the system can be relied upon
to perform exclusively and correctly the system
task(s) under defined operational and environmen-
tal conditions over a defined period of time, or at a
given instant of time” [29].

The ISO definition is clearly centered upon availability.
This is no surprise as this definition can be traced back to the
definition given by the international organization for tele-
phony, the CCITT [11], at a time when availability was the
main concern to telephone operating companies. However,
the willingness to grant dependability a generic character is
noteworthy, since it goes beyond availability as it was
usually defined, and relates it to reliability and maintain-
ability. In this respect, the ISO/CCITT definition is consistent
with the definition given in [26] for dependability: “the
probability that a system will operate when needed.” The
second definition, from [29], introduces the notion of
reliance, and as such is much closer to our definitions.

Terminology in the security world has its own rich
history. Computer security, communications security, in-
formation security, and information assurance are terms that
have had a long development and use in the community of
security researchers and practitioners, mostly without direct
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Fig. 13. Solid versus intermittent faults.Figure 2.3. Intermittent fault sources, as proposed by Avizienis et al. in [20, 21].

conditions for a specified period of time” [23]. Many research activities have been
proposed in the last years in order to improve the reliability of electronic devices; in
this context, reliability growth (i.e., the improvement in reliability that results from
correction of faults), and reliability model (i.e., model used to estimate, measure, or
predict the reliability of a system ) are the main metrics that should be considered
[23].

From a mathematical point of view, the reliability R is the likelihood of a system
to work in a proper way up to time t. A commonly used model to express the
reliability is the exponential distribution: the failure rate � is assumed as constant
and the reliability R(t) is given by the equation 3.1.

R(t) = e��t (2.1)
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From a purely statistical point of view the exponential distribution is a natural
choice for representing times-to-failure of a unit during its useful life period [24].
One of the major feature of this model relies in the fact that it is a memoryless
model, i.e., the future behavior is not influenced by the past events. Consequently,
the probability that a component fails in the near future is always the same, and
does not depend on its current age. Every instant is like the beginning of a new
random period, which has the same distribution regardless of how much time has
already elapsed. Exponential distribution is also very convenient because it is easy
to combine failure rates of independent components (e.g., belonging to the same
SoC) to find a reliability model of a complex system [22].

One of the drawback associated to the exponential distribution is that it not
always appropriate to model the overall lifetime of technical devices, because their
failure rates are not constant: more failures occur when the considered systems are
very young or very old. The life cycle of a population of semiconductor devices, for
example, can be graphically represented with a curve called bathtub curve (Figure
2.4), which models the failure rate vs. time [24]. This curve is created by mapping
the rate of the so called ”early infant mortality”, the rate known as useful life (normal
life) or random failure, and the rate of failures due to the wear out of the device.
The earliest period, with steepest part of the curve, has the highest but decreasing
failure rate; the lowest failure rate, instead, is related to the central part of the
chart, corresponding to the normal life period of the device; finally, the rightmost
part of the graph, where the curve goes up quickly, represents the increasing failure
rate when reaching the end of life, due to intrinsic material issues and accumulative
electrical or mechanical stresses.

Another attribute related to the dependability definition is the availability:
often expressed as a probability, it represents the degree to which a system or com-
ponent is operational and accessible when required for use. In high availability
applications, a metric known as nines, corresponding to the number of nines follow-
ing the decimal point, is used. For example, ”five nines” means 0.99999 (or 99.999%)
availability [23][25].

Finally, the safety is defined as the absence of disastrous consequences on the
users and the environment, when a system is employed.

As general consideration, several other dependability attributes have been de-
fined that are either combinations or specializations of the six basic attributes listed
above. For example, security is the concurrent existence of availability for autho-
rized users only, confidentiality, and integrity. Moreover, the characterization of a
system reaction to faults could be done, for example, implementing robustness,
i.e. dependability with respect to erroneous inputs.
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Figure 2.4. The Bathtub curve, representing the failure rate vs. the time
of electronics devices.

2.1.3 The means

The development of a dependable computing system requires a combined utilization
of a set of four techniques: fault prevention, to prevent the occurrence or the
introduction of faults; fault tolerance, to deliver correct service in the presence
of faults; fault removal, to reduce the number of faults; and fault forecasting
to estimate, among the others, the present number, the future incidence, and the
consequences of faults.

In the context of this PhD thesis, we address only the fault tolerance. IEEE
defines fault tolerance in two complementary ways: (1) the ability of a system
or component to continue normal operation despite the presence of hardware or
software faults. (2) The number of faults a system or component can withstand
before normal operation is impaired [23].

Fault tolerance is a recursive concept: it is essential that the mechanisms that
implement fault tolerance should be protected against the faults that might a↵ect
them. Popular examples are the voter modules employed in redundancy-based fault
tolerance systems, self-checking checkers systems, etc.
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2.2 Reliability characterization methods

Nowadays, testing methods are essential for electronic systems to detect both la-
tent hardware fault and new faults appearing in logic resources and/or in memory
modules. In general, testing is the traditional procedure aimed at measuring the
output response to specific signals applied at the input of the Device Under Test
(DUT), comparing the obtained results with the known fault-free response (also
called golden response). In this context, the input signals are called test patterns
or test vectors, while the golden response is traditionally obtained through simu-
lations. Di↵erent testing strategies exist, along with di↵erent applicability moments
within the system device lifetime, in order to characterize its reliability.

2.2.1 Structural and functional test

One of the major test classification is between structural and functional test [26].
Structural test category includes all the techniques that take advantage of deep
knowledge of the internal structure of the DUT; this kind of test check that each
element of the device is working as expected. In general, the test patterns are simple,
since they target one element, so they can highly benefit from automation. The main
drawbacks of structural test are the lack of an overall view of the entire DUT, and
the issues to assess the device performance. Functional test methods, instead, do
not need any information about the internal architecture, but they use functional
specification of the DUT; in practice, a functional test control that the entire device
behaves as expected, assessing also the performance. The main drawback is related
to the test stimuli generation, which require a lot of expertise that relies on the test
engineer [22].

2.2.2 Manufacturing and on-line testing

Another possible test classification is based on the lifetime phase in which a test is
applied.

Manufacturing testing allows the evaluation of the performances of the target
device at production time. The today semiconductor devices are very sensitive to
impurities and particles: to manufacture these devices it is necessary to manage
many processes while ensuring an optimal ”cleaning level”. Consequently, even if
the device design was verified to be correct, there is no guarantee that the manufac-
tured device is compliant with the design requirements. Therefore, manufacturing
testing is required. The manufacturing test main goal is to classify faulty from
good devices. Additionally, it can help in determining if there is any phase of the
fabrication process that systematically introduce a defect in the produced chips, by
performing some kind of diagnosis [22]. Tests are executed in various stages, in order
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to prevent expending money, time and e↵orts in realizing a faulty device. According
to these features, two are the most important test approaches used today in the
manufacturing process:

• Wafer Sort & After Packaging Final Test : wafer test (also called as wafer sort)
is performed to all dies present on the wafer, looking for functional defects; this
is typically done by applying special test patterns to them. As a consequence,
the faulty dies are marked, so only known good dies will be packaged. Once the
fault-free dies have been packaged, a final test is performed aimed at verifying
that the packaging process itself does not a↵ect the devices, and also that the
pin connections were correctly wired.

• Burn-in: In general, semiconductor manufacturers want to avoid introducing
to the market devices that will fail in an early stage (i.e., in the ”Infant Mortal-
ity Failure” period described in the Bathtub curve - Figure 2.4). The Burn-in
test is performed to discover this phenomenon: it consists in subjecting the
devices to particularly stressing conditions (e.g., extreme temperatures and
supply voltage) for a specified period of time. These stressing conditions work
as a ”time machine” for the chips under test. After the burn-in period, the fi-
nal test is performed again to the devices. In this way, chips that were subject
to infant mortality, will not go into the market. In order to characterize the
Bathtub curve (Figure 2.4), the complete burn-in process, that is covering all
three stages of a device lifecycle, is to be performed on a statistical sample of
products.

The two manufacturing tests, described in the previous paragraph, are exe-
cutable by means of a special machines in charge of applying the tests at the DUT.
These machines are commonly called Automatic test Equipment (ATE) and
are composed by several parts, where the controlling of the di↵erent instruments
is demanded to a computer. ATEs are widely used in electronic industry where
automation is needed for performing measurements and evaluation of test results
during manufacturing and maintenance [27].

The main drawbacks of ATEs are related to the current semiconductor devel-
opment trend: with more than 1 billion transistors in a 22 nm technology micro-
processor, the complexity of the DUT is increasing dramatically. Related to this
phenomenon, the minimum number of test patterns is increasingly with the same
tendency; consequently, even with the most fast and e�cient ATE, apply these test
patters to Very Large Scale Integration (VLSI) circuits it may take thousands of
years to fully excite all possible states of a DUT. Moreover, due to complexity, not
all possible states may be reachable just manipulating the primary inputs of a device
[22].
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A solution to this problem is the Design for Test (DfT): the circuits are
designed in a way that make them e�ciently and easily testable. More in particular,
this test enhancements can be done exploiting the sequential parts of the DUT. This
design modifications help the circuits to be tested with an acceptable fault coverage,
in an acceptable time, and, in addition, to overcome the problem of test access. The
added special features can allow the control and observation of deeply embedded
parts of the circuit under test to verify circuit functionality and detect fabrication
defects. Performance loss due to their inclusion must be minimal in normal (non-
test) operating mode. The most popular DfT techniques are structured scan-based
approaches (e.g., scan chains [28]), but there are also other useful special purpose
techniques to be applied at the design stage (e.g., test point insertion [29]).

Finally, a further step in aiding manufacturing testing is based on generating
test patterns and evaluating their results directly on-chip; this approach is called
Built-In Self-Test (BIST), and it requires some dedicated hardware modules
(within the DUT) aimed to generate the patterns, to apply the patterns themselves,
and to analyze the results. In practice, in BIST the typical functions performed by
an external testers (i.e., the test generation and response analysis) are carried out
on-chip. Consequently, the main role of the tester is related to the management
of the test enable signals, aimed to indicate at the chip under test that the BIST
procedure has to be executed; then, a signal is generated by the chip under test in
oder to specify at the tester that the chip itself pass or fail the test procedure [30].

On-line testing has been defined as the process where faults are detected and/or
corrected while the system is working in its natural environment. Nowadays, on-
line testing is essential for modern microprocessors to detect both latent hardware
defect and new defects appearing both in logic and memory modules. On-line test
is required by most safety-critical applications, since a faulty behavior could lead
to customers’ inconveniences, economic loss and even casualties. In concurrent
on-line testing the detection of operational faults is performed at the same time
the device is working. This means, more precisely, that the detection of operational
faults must be performed keeping the system in normal or safety operational state.
Concurrent online testing usually exploits specific hardware, such as data redun-
dancy and voters, with a costly overhead for the final system. In the other hand, in
non-concurrent on-line testing, the detection of operational faults is performed
while the normal operations are temporarily suspended. The test procedure is ei-
ther interruptible or composed of small subparts, and a test manager schedules it
in order to minimize its intrusiveness. Non-concurrent testing usually needs less ad-
ditional hardware. Finally, another kind of on-line test is start-up testing, that is
executed when a system is booting, before putting it to actual service. This implies
no consequence for the application performance, as it is not yet running; moreover,
on-line testing is useful for systems that are consistently restarted throughout their
mission time, like the Power-On Self-Test (POST) of a computer memory [31].
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2.3 Di↵erent devices, di↵erent reliability aspects

In this section, di↵erent test methods and procedure are presented, in order to
overview the today state-of-the-art techniques applied to di↵erent electronic devices.
The common features of these approaches is the e↵ort to reduce cost. In fact, with
the advent of SoC, the low-cost concept has become a common denominator among
test generation and test application. With the last generation of semiconductors
devices, test cost is becoming increasingly percentage of Cost of Build (COB). This
is even critical in low cost markets like consumer devices. In order to reduce this
phenomenon, di↵erent strategies could be adopted: they are mainly based on DfT
features included on a chip to reduce test costs without impacting its e↵ectiveness
[32]. The costs of SoC test procedure involve many factors, that are primarily test
pin count, application frequency, and tester memory depth for pattern and data
storage.

In recent years, many e↵orts have been done in order to decrease test cost [33].
Two are the most important approaches that have to be considered: the low-cost
scan-based methods and the low-cost self-test techniques. Low-cost scan-based test
approaches rely on design techniques that allow the minimization of the number of
tester channels and the tester frequency requirements [34]. In addition to (or in
substitution of) traditional scan cells, these techniques adopt suitable DfT features
such as decoders and phase-locked loop (PLL)-based circuitries; the former addresses
pin count minimization, while the latter permits moving deterministic patterns in
the chip at reduced speed, thus applying them at higher frequency [22].

In the other hand, self-test procedures address frequency requirement mitigation,
since it normally exploits internal or independent clock supply resources that do not
request any external intervention. In particular, low-cost self-test approaches may be
based on infrastructure intellectual property (I-IP) or may employ functional parts
of the DUT itself [35]. The key point is that, once launched, a self-test procedure
is autonomously applied until it ends. The two main categories of low cost self-test
are: Software-Based Self-Test (SBST) and BIST. The details related to the SBST
approaches are listed in the Section 2.4, while the BIST features have been described
in Section 2.2.2. Moreover, there exist also test procedures exploiting both SBST
and BIST principles; they consist of at least three parts: (1)a preliminary initial-
ization phase aimed at loading at low-frequency the test microcode and/or setting
parameters; (2) a self-test execution at high frequency; and (3) result download at
low frequency.

Finally, the test pattern compression is another strategy aimed at saving test
costs. Such technique is intended to reduce the overall size of the test vectors to
be applied to the DUT, thus reducing the test time. Several techniques have been
developed in this direction: they mainly consist in encoding the test vectors using
as few bits as possible. Compressed data are then reconstructed, or decompressed,
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by ad hoc hardware decoders/decompressors placed on a chip or on the tester [22].

2.3.1 Microprocessors

Among the di↵erent issues related to the test of electronic devices, testing embedded
microprocessors is one of the most challenging tasks to be performed at the end of
the SoC production cycle. The key point is that execute an exhaustive testing is not
a feasible solution: in fact, apply all the possible instructions, in all their feasible
addressing modes, with all the potential data combinations, in all possible orders,
starting from all the reachable initial states, may take extremely long testing times,
thus making impossible this test approach. In order to decrease these issues several
approaches are today used.

As already stated in the previous section, the today testing strategies are largely
based on the introduction of additional DfT hardware devoted to perform structural
testing; scan chains and BIST are well known and very popular solutions. However,
functional methods, such as SBST are today increasingly used.

Whens the testing of a microprocessor is addressed, there are several aspects
to be taken onto account: the fault coverage (i.e., the percentage of fault that can
be detected during the test), the ability of the test to be executed at maximum
speed, an acceptable test time, the guarantee of independence of the di↵erent cores
to be tested in the system, the area overhead introduced by the DfT module, etc...
Moreover, the execution of an on-line test implies others constraints to be considered:
the preservation of the previous microprocessor state, the ability to provide the
diagnostic information, and the fulfilling of the timing constraints considering that
generally the time slice assigned to test execution is shorter than the test program
itself.

Nowadays, SBST and, in general, microprocessor functional testing approaches,
are gaining again popularity after many years in which scan-based approaches have
been largely preferred [36]. This phenomenon is due to many reasons: the latest
technologies show timing-related faulty behaviours that can be investigated in a
more accurate manner using SBST, since this technique allows executing a test at
the chip speed; moreover, SBST techniques are cost and time e↵ective, since they
request few tester channels and limited memory amount on the tester; finally, the
self-test program can be stored in a non-volatile memory and activated also during
the component lifetime to perform on-line testing. As an example, in the automotive
fields, emerging standards and regulations (like the ISO 26262 [37]) require high fault
coverage and in-field testing (e.g., periodic on-line testing, power-up testing, etc..)
that can be more easily implemented through SBST.

Beside the analysis presented above regarding the microprocessors test, a partic-
ular attention must be given at the problem of testing embedded processors cores:
their wide di↵usion is increasing the challenges in the test arena. Modern designs
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include complex architectures that further increase test complexity, as pipelined
and superscalar designs. Single sub-components in a microprocessor may be au-
tonomously tested by accessing their inputs and outputs through specific test buses
built in the chip, and by applying specific test patterns, or resorting to integrated
hardware, such as with Logic Built-In Self-Test (LBIST) [38]. Within this frame-
work, a critical issue is the system integration test, where the whole processor and
the interconnection between di↵erent modules have to be checked. At this level, one
suitable possibility is to let the processor execute carefully crafted test programs
[22].

2.3.2 Memories

Semiconductor memories are today commonly used to store programs and huge vol-
ume of data in all the digital systems. For many current applications, the today
system performance is strictly related to the number, size, and speed of its embed-
ded memory modules [41]. In fact, microprocessors rely more and more on e�cient
memory devices as a support of the extreme computational demand. This phe-
nomenon is further highlighted when multicore computational units are considered.
As an example, in [39] is stated that, when multithreaded multicore processors are
considered, caches are organized in multiple levels and multibank architectures that
occupy almost 90% of the relative chip area. Thus, high-quality memories on-line
testing in modern processors is essential. As countermeasure, Memory Built-In Self-
Test (MBIST) schemes [40] are integrated in embedded memories for manufacturing
testing purposes; anyway, they can also be reused for on-line testing.

In literature, several research works have been proposed in the last decade ad-
dressing the memories test. In this section the main aspects related to the Software-
based memory tests are presented. In general, the term Software BIST is used to
denote a test solution targeting memories embedded in a SoC, based on performing
the test through a suitable program executed by a processor inside the SoC itself.
This program is in charge of executing the sequence of accesses to memory (for both
read and write operations) according to a given test algorithm, typically known as
March algorithm [42]. The software-based test approaches are suitable to address
the Back-to-Back (BtB) test execution: several published works underline, in fact,
that various memory defects existing in new technologies require the test accesses
to be performed at the maximum speed (or at least at-speed). A typical software-
based test procedure is based on the usage of suitable instructions (i.e., LOAD and
STORE instructions); moreover, implementing a March element in any assembly
language requires addressing some critical issues, e.g., the loops management, the
result evaluation, and the generation of the memory address [22].

Among the various types of memories, Static Random Access Memories (SRAM)
are widely used in embedded and in high speed applications (e.g., the cache memories
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of microprocessors). The main challenge of testing SRAMs consists in providing
realistic fault models and practical test solutions with minimal application time.
Two are the most important fault models associated to the memory environment:
static faults, such as stuck-at, transition, and coupling faults which require at most
one read or write operation to be sensitized, and dynamic faults, that are sensitized
by more than one read or write operations. In [41] the authors stated that in order
to address the latter fault category, an elaborated combination of operations, data
background, and addressing sequence is required. Consequently, classic SRAM test
solutions are not su�cient to cover a new type of faults that are emerging in the
last nanometer technologies and that are a consequence of the shrinking geometries
(i.e., the dynamic faults).

2.4 Software-Based Self-Test and Software-Based
Diagnosis

As already explained in the previous Section, nowadays, SBST and, in general,
microprocessor functional testing approaches are increasingly adopted. Two are the
main reasons behind this phenomenon: (1) the latest technologies show timing-
related faulty behaviors that can be investigated in a more accurate manner using
SBST, since this technique allows executing a test at the chip speed; moreover, (2)
SBST techniques are cost and time e↵ective, since they request few tester channels
and limited memory amount on the tester.

In general, the principle of Software-Based Self-Test (SBST) is to run functional
test patterns, based on the processor Instruction Set Architecture (ISA), i.e., ex-
ploiting processor resources to test the processor itself and the components around
it [14, 22]. Practically, SBST consists in forcing the embedded processor to execute
a special purpose test program, i.e., a sequence of instructions capable of deeply
exciting possible device faults and propagating the fault e↵ects to some observable
locations. The SBST program can either be stored in a non-volatile memory, or
uploaded in a RAM immediately before the test execution. SBST does not require
circuit modifications (therefore, making it particularly suitable for the test of third-
parties cores, which can hardly be modified and which hardware model is not always
available) and may o↵er excellent defect coverage, since it is executed at the same
speed of the normal applications. Moreover, it can be performed both at the end of
the production process, and during the operational phase (e.g., for periodical on-line
testing).

Many e↵orts have been invested in the past three decades on the development
of functional and SBST topic. Academy [14, 43] and industry [44] have proposed
many techniques solving general test problems and giving solutions to functionally
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reach the highest possible fault coverage. Considering the applicability fields, SBST
is included in the manufacturing flow of microprocessors, as described in [45] where
an industrial case study has been presented. Moreover, SBST is also used to identify
faults during normal operation of the device by performing SBST on-line testing.
Besides the advantages of SBST on-line testing explained previously, some additional
aspects have to be taken into account when dealing with test program generation
for on-line purposes. The test program must first be able to properly excite the
considered processor modules, and then, once the results have been produced, it
must turn them observable to observable locations; the latter operation has to be
executed in a transparent way that does not a↵ect the normal operation of the
mission application. The most important constraints for on-line testing are (among
the others):

• Preserving the processor status: the status of the interrupted mission (i.e., the
processor status register content) has to be saved and restored at the end of
the test.

• Execution time: duration must be as short as possible in order to, for example,
avoid the real time features of the device.

• Memory content: it is crucial to prevent test programs from overriding infor-
mation belonging to other processes (e.g., the mission program). Code and
data memory belonging to the test procedures must be clearly defined and
limited considering the system memory map of the device [22].

Current state-of-the-art techniques include di↵erent strategies able to generate
test programs resorting to manual and automatic approaches. In general, the new
literature methodologies are generic enough to be easily adapted to various pro-
cessors belonging to di↵erent application domains. As an example, new grading
techniques to rapidly characterize test programs have been proposed in [44]. How-
ever, reducing costs related to both test program fault grading and test application
is still an open issue[22]. The e�cient generation of the SBST programs is the main
critical issue; an alternative approach aimed at reducing the e↵orts related to the
test program development is based on the usage of particular tools able to generate
pseudo random pattern [45, 46].

Another recent trend in SBST research is to scale SBST techniques in multi-
threaded multicore architectures. In [47] the authors propose multithreaded (MT)
SBST methodology able to generate an e�cient multithreaded version of the test
program, and able to schedule the resulting test threads into the hardware threads
of the processor, in order to reduce the overall test execution time and, at the same
time to increase the overall fault coverage. This methodology has been demonstrated
in the OpenSPARC T1 processor model which integrates eight CPU cores, each one
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supporting four hardware threads. More in general, the e↵ective application of SBST
to multithreaded multicore architectures creates significant challenges:

1. porting of existing test programs from the single-threaded, unicore case to
e�ciently test all the individual cores;

2. providing su�cient fault coverage for the thread-specific control logic, which
is a significant portion of the control logic in the multithreaded architectures;

3. exploitation of thread-level and core-level parallelism to reduce test execution
time;

4. avoiding the scaling of test program memory footprint with the number of
cores.

Given their high computational power, General Purpose Graphics Processing
Units (GPGPUs) are increasingly adopted: GPGPUs have begun to be preferred to
CPUs for several computationally intensive applications, not necessarily related to
computer graphics. In this context, new e�cient test methodologies are mandatory.
In [15] a new SBST aimed at detecting and localizing hardware faults in GPGPUs is
presented. This method is based on a set of GPU kernel programs containing SBST
procedure; once that a kernel is executed, a signature of the test and an identifier
of the Streaming Multiprocessor (SM) in which it has been executed, are provided
at the CPU. In this way, the CPU is able to avoid the usage of the faulty SM for
the future computations.

The SBST technique can be even used for diagnostic purpose [48, 49, 50]. The
main common concept that drives several research work within this context is the fol-
lowing: ”Given a set of test patterns, two faults can be distinguished if they exhibit
di↵erent behaviors at the Primary Outputs (POs).” In general, with a software-
based diagnosis approach, using functional information, it is easier to generate test
programs to distinguish certain faults without structural analysis or fault simula-
tion. For example, faults on the data bus may be distinguished by loading and
storing specific values; faults in the instruction decode unit may be distinguished by
executing di↵erent instructions. However, it should be pointed out that due to the
complex structure of a processor, it is impossible to foresee all faults detected by a
test program. Thus, given an observed test response, the fault candidates may be
several (some expected and some other unexpected). This is the main issue related
to the generation of software-based diagnosis methods, and this also represents the
main motivation behind the research works that have been developed in the area.

21



2 – Reliability background

2.5 Overview on the Fault Tolerance Techniques

In general, the fault tolerance techniques aim to achieve robustness and dependabil-
ity in a system through the usage of error detection and system recovery methods.
Among the di↵erent fault tolerance approaches, the first classification that has to be
introduced is between proactive and reactive techniques. The proactive ones are
aimed to detect a possible fault before it appears in the system; the reactive ones,
instead, are aimed to manage the fault in order to reduce as much as possible the
e↵ects introduced in the system. Moreover, the reactive techniques could be further
classified in error processing (i.e., remove errors from the computational state)
and fault treatment (i.e., prevent faults from being reactivated) [51].

In the rest of this section and of this PhD thesis the reactive techniques finalized
to error processing and to fault treatment are addressed.

The basic idea behind fault tolerance is the use of redundancy. The idea of
using redundancy to construct reliable systems from unreliable components was first
described by Von Neumann in 1956 [52]. Redundancy (based on multiple copies) is
used to detect faults and mask failures: Avizienis and Kelly [56] suggest that the
di↵erent types of redundancy possible in a computation are repetition, replication
(hardware), and logic (software) [54].

In Figure 2.5 the main techniques involved in fault tolerance are shown. The
choice of error detection, error handling and fault handling techniques, and of their
implementation is directly related to and strongly dependent upon the underlying
fault assumption: the class(es) of faults that can actually be tolerated depend(s)
on the fault assumption that is being considered in the development process and,
thus, relies on the independence of redundancies with respect to the process of fault
creation and activation. A (widely used) method of achieving fault tolerance is
to perform multiple computations through multiple channels, either sequentially or
concurrently [21, 22]. When tolerance of physical faults is required by the system,
the channels may be of identical design, based on the assumption that hardware
components fail independently. However, this approach is not completely suitable
for the tolerance of solid development faults, which necessitates that the channels
implement the same function via separate designs and implementations methodolo-
gies [55], i.e., through design diversity [56].

Fault masking (a.k.a. masking), results from the systematic usage of compen-
sation. Such masking will conceal a possibly progressive and eventually fatal loss of
protective redundancy. So, practical implementations of masking generally involve
error detection (and possibly fault handling), leading to masking and recovery [21].

Preemptive error detection and handling, possibly followed by fault han-
dling, is commonly performed at system power up. It also comes into play during
operation, under various forms such as spare checking, memory scrubbing, audit pro-
grams, or so-called software rejuvenation, aimed at removing the e↵ects of software
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aging before they lead to failure [21].

The provision within a component of the required functional processing capa-
bility together with concurrent error detection mechanisms leads to the notion of
self-checking component, either in hardware or in software; in the context of this
PhD thesis, an increasingly used self-checking software techniques, a.k.a. Software-
Based Self-Test is introduced and applied to di↵erent research fields (Section 2.4).

Finally, fault tolerance could be considered also as a recursive concept: it is
essential that the mechanisms that implement fault tolerance should be protected
against the faults that might a↵ect them. Examples of such protection are voter
replication (in case of redundancy with a majority voter mechanism is used), self-
checking checkers, ”stable” memory for recovery programs and data [21].

Upon the fault tolerance techniques and approaches summarized above, a very
important term that should be introduced when the fault tolerance is address is cov-
erage: in fact, not all fault tolerance techniques are equally e↵ective; the measure
of e↵ectiveness of any given fault tolerance technique is called its coverage [21].

Usually, fault handling is followed by corrective main-
tenance, aimed at removing faults that were isolated by fault
handling; in other words, the factor that distinguishes fault
tolerance frommaintenance is that maintenance requires the
participation of an external agent. Closed systems are those
systems where fault removal cannot be practically imple-
mented (e.g., the hardware of a deep space probe).

Rollback and rollforward are invoked on demand, after
error detection has taken place, whereas compensation can
be applied either on demand or systematically, at pre-
determined times or events, independently of the presence
or absence of (detected) error. Error handling on demand
followed by fault handling together form system recovery;
hence, the name of the corresponding strategy for fault
tolerance: error detection and system recovery or simply
detection and recovery.

Fault masking, or simply masking, results from the
systematic usage of compensation. Such masking will
conceal a possibly progressive and eventually fatal loss of
protective redundancy. So, practical implementations of
masking generally involve error detection (and possibly
fault handling), leading to masking and recovery.

It is noteworthy that:

1. Rollback and rollforward are not mutually exclusive.
Rollback may be attempted first; if the error persists,
rollforward may then be attempted.

2. Intermittent faults do not necessitate isolation or
reconfiguration; identifying whether a fault is inter-
mittent or not can be performed either by error
handling (error recurrence indicates that the fault is
not intermittent), or via fault diagnosis when roll-
forward is used.

3. Fault handling may directly follow error detection,
without error handling being attempted.

Preemptive error detection and handling, possibly
followed by fault handling, is commonly performed at
system power up. It also comes into play during operation,
under various forms such as spare checking, memory
scrubbing, audit programs, or so-called software rejuvena-
tion [27], aimed at removing the effects of software aging
before they lead to failure.

Fig. 17 gives four typical and schematic examples for
the various strategies identified for implementing fault
tolerance.

5.2.2 Implementation of Fault Tolerance
The choice of error detection, error handling and fault
handling techniques, and of their implementation is directly
related to and strongly dependent upon the underlying
fault assumption: The class(es) of faults that can actually be
tolerated depend(s) on the fault assumption that is being
considered in the development process and, thus, relies on
the independence of redundancies with respect to the process
of fault creation and activation. A (widely used) method of
achieving fault tolerance is to perform multiple computa-
tions through multiple channels, either sequentially or
concurrently. When tolerance of physical faults is foreseen,
the channels may be of identical design, based on the
assumption that hardware components fail independently.
Such an approach has proven to be adequate for elusive
development faults, via rollback [23], [28]; it is however not
suitable for the tolerance of solid development faults, which
necessitates that the channels implement the same function
via separate designs and implementations [57], [4], i.e.,
through design diversity [6].

The provision within a component of the required
functional processing capability together with concurrent
error detection mechanisms leads to the notion of
self-checking component, either in hardware or in software;
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Fig. 16. Fault tolerance techniques.
Figure 2.5. The Fault Tolerace techniques, as proposed by Avizienis et al. in [20, 21].
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2.6 Automatic Test Equipment (ATE)

The Automatic Test Equipments (ATE) are machines that perform tests on a
device, using automatic approaches finalized to quickly perform measurements and
evaluate the test results. An ATE can be a simple computer controlled digital mul-
timeter, or a complex system containing several test instruments (real or simulated
electronic test equipment), capable of automatically testing and diagnosing faults
in sophisticated electronic packaged parts or on Wafer testing, including System-
On-Chips and Integrated circuits [57]. In addition to the semiconductor industry,
ATE is used in the automotive, medical equipment, airplane, and other manufactur-
ing industries. ATE also conducts stress testing with minimal human interaction;
moreover it is considered cost e�cient only for high-volume testing: in fact, the wide
application domain and the complexity of its equipments make ATE to be expensive
devices.

Considering all the manufacturing tests described in the previous sections of this
thesis, an ATE is in charge of applying some of these tests to the DUTs: typically,
it is able to perform the testing process. More in particular, the basic component
of a generic ATE are:

• a computer in charge of controlling the process and the di↵erent instruments
that will be connected to the DUT;

• a variable number of instruments, which performed the desired measures, ap-
plying stimulus and collecting results;

• a fixture that is the physical place holder for the DUT, where it connects to
the ATE;

• eventually, a handler to place the packaged chips in the fixture; or probes
that connect directly to the DUT when wafer testing is performed. It can be
from as simple as computer controlling a multimeter, to a complex equipment,
performing many di↵erent analogue and digital measurements [22].

Among the di↵erent ATE types, the most used are listed below [58]:

PCB inspection system PCB inspection is a key element in any production pro-
cess and particularly important where automatic pick and place machines are
involved. Manual inspection has been used for many years, but it was al-
ways unreliable and inconsistent. Nowadays, considering the printed circuit
boards that are considerably more complicated, manual inspection is not a
viable option. Automatic Optical Inspection (AOI) is widely used in
many manufacturing environments. It is essentially a form of inspection, but
achieved automatically. This provides a much greater degree of repeatability
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and speed when compared to manual inspection. AOI is particularly useful
when situated at the end of a line producing soldered boards. Here it can
quickly locate production problems including solder defects. As AOI systems
are generally located immediately after the PCB solder process, any solder
process problems can be resolved quickly and before too many printed circuit
boards are a↵ected. Moreover AOI takes time to set up and for the test equip-
ment to learn the board; consequently, It is ideal for high volume production.
Automated X-Ray inspection (AXI) has many similarities to AOI. How-
ever, with the advent of BGA packages it was necessary to be able to use a
form of inspection that could view items not visible optically. AXI systems
can look through IC packages and examine the solder joints underneath the
package to evaluate the solder joints.

ICT In circuit test ICT not only looks at short circuits, open circuits, component
values, but it also checks the operation of ICs. Although ICT is a very powerful
tool, it is limited by lack of access to boards, as a result of the high density of
components in most designs.

JTAG Boundary scan testing Boundary scan is a form of testing that has come
to the fore in recent years. Also known as Joint Test Action Group
(JTAG), or by its standard IEEE 1149.1 [59], boundary scan o↵ers signif-
icant advantages over more traditional forms of testing and it has become one
of the major used tools in automatic testing. The main reason behind the
boundary scan testing developed was to overcome the problems of lack of ac-
cess to boards and integrated circuits for testing. Boundary scan overcomes
this, by having specific boundary scan registers in large integrated circuits.
With the board set to a boundary scan mode, serial data registers in the in-
tegrated circuits have data passed into them. The response and hence data
passing out of the serial data chain enables the tester to detect any failures.
As a result of its ability to test boards and even ICs with very limited physical
test access, Boundary Scan / JTAG has become very widely used.

Functional testing Functional test can be considered as any form of electronics
testing that exercises the function of a circuit. There are di↵erent approaches
that can be adopted, dependending on the type of circuit (RF, digital, ana-
logue, etc), and on the degree of testing required. The main approach today
used is Functional Automatic Test Equipment (FATE) [60].

Combinational test Nowadays, no single method of testing is able to provide a
complete solution; in order to overcome this issue, various ATE systems incor-
porate a variety of test approaches. These combinational testers are generally
used for printed circuit board testing. As a consequence, a single electronics
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test is able to gain a much greater level of access for the printed circuit board
test, and the test coverage is much higher. Additionally, a combinational tester
is able to integrate a variety of di↵erent types of test without the need of mov-
ing the board from one tester to another: in this way a single suite of tests
may include In-circuit testing as well as some functional tests and then some
JTAG boundary scan testing.

In the context of this PhD thesis, a sort of ATE has been designed and imple-
mented; the final goal of this system is the automatic test of an automotive timer
module, i.e., the Generic Timer Module (GTM). The developed ATE is based on an
FPGA device, and it ensures the possibility to test the real time characteristics of
the timer module under test. The detail of this system are explained in Section 5.
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Chapter 3

The proposed SBST and
diagnostic methods for VLIW
processors

In this section, a comprehensive explanation of the main features of a generic VLIW
processor are proposed, along with the details of the VLIW processor used as case
study (i.e., the VEX processor, developed by HP [61]). Then, the most important
SBST and diagnostic methods developed in the context of this PhD thesis are pre-
sented, together with the most important experimental results gathered by applying
the proposed techniques.

3.1 Motivation and introduction

Mainly due to the continuous scaling in the semiconductor manufacturing process
and to the increasingly high operation frequency of integrated circuits, processor
chips face growing testability problems. Moreover, since the production processes
are highly stressed, phenomena like metal migration or aging of the circuit may
increase the occurrence of permanent faults into the systems, even during the circuit
operational phase. For these reasons, new test solutions are being investigated in
order to provide high fault coverage with acceptable costs (e.g., in terms of test
time, silicon area overhead and required test infrastructure).

A promising approach for processors and processor-based systems (e.g., Systems
on a Chip, or SoCs) corresponds to the so called Software-Based Self-Test (SBST)
[36]: the basic idea is to generate test programs to be executed by the processor
and able to fully exercise the processor itself or other components in the system,
and to detect possible faults by looking at the produced results. One of the main
advantages of SBST lies in the fact that it does not require any extra hardware;
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therefore, the test cost is reduced and any performance or area penalty is avoided.
Moreover, SBST approaches allow at-speed testing, and can be easily used even for
on-line test. For these reasons, SBST is increasingly applied for processors and SoC
testing, often in combination with other approaches.

Among the various microprocessor architectures, Very Long Instruction Word
(VLIW) processors have been demonstrated to be a viable solution especially for
applications demanding high performance while exposing a considerable amount of
parallelism, such as several Digital Signal Processing algorithms used in multimedia
and communication applications [62]. VLIW processors are currently adopted in
several products, in particular for embedded applications, and the problem of testing
them is increasingly relevant.

VLIW processors are characterized by a pipelined architecture with multiple
Functional Units (FUs). Unlike superscalar processors, VLIW processors do not
include any significant control logic, since instruction scheduling is completely per-
formed by the compiler. This implies that the hardware complexity is far lower than
for superscalar processors, while the compilation steps become more complicated.
Consequently, the control hardware of the processor is much more easily testable
than in other processors (e.g., the superscalar ones). Another key feature of VLIW
processors is the instruction format. In fact, VLIW processors are characterized
by grouping several instructions (named micro-instructions) into one large macro-
instruction (also called bundle), where each micro-instruction within the bundle is
executed in parallel distinct computational units, referred to as Computational Do-
mains. In VLIW architectures the scheduling of the operations is fully performed at
compile time: the compiler is responsible for allocating the execution of each instruc-
tion to a specific Functional Unit. Due to these characteristics, VLIW processors
are also suitable for safety-critical systems adopted in space, automotive or rail-
transport fields which require computationally intensive functionalities combined
with low power consumption. As an example, the processor Tilera TILE64TM,
composed of several VLIW cores, has been evaluated to e�ciently perform image
analysis on-board a Mars rover in support of autonomous scientific activities [12, 13].

A few SBST approaches have been proposed in the literature in order to properly
test VLIW processors against permanent faults: some of them rely on suitable
instructions belonging to the processor instruction set to apply the test patterns
previously generated by a conventional automatic test pattern generator (ATPG)
targeting each internal component [63]. Although e↵ective, these methods have
several drawbacks: first of all, transforming the test patterns generated by the
ATPG into test programs is not always straightforward; secondly, the resulting test
programs are far from being optimized, especially in terms of test length; finally,
the attainable fault coverage is not always as high as it may be required.

In [64] a specific issue which must be faced when testing a VLIW processor is ad-
dressed: the register file characteristics are di↵erent than in other processors, since
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it must be accessed from di↵erent domains. In the same paper an e↵ective solution
to the test of VLIW register files is presented. In this section the generation of
e↵ective SBST test programs for the whole VLIW processor is addressed, character-
ized by minimal duration, minimal size, and maximal fault coverage. The proposed
method starts from existing functional test algorithms developed for each single FU
type embedded into the processor (e.g., ALUs, adders, multipliers, memory units).
Although the characteristic of the FUs used within a VLIW processor are similar
to those used in traditional processors, generating optimized code to e↵ectively test
these units is not a trivial task: in fact, by exploiting the intrinsic parallelism of
VLIW processors it is theoretically possible to reduce the increase in duration and
size of the test programs when the VLIW processor size grows. For example, test-
ing the ALUs in the di↵erent Computational Domains can be performed in parallel,
forcing them to perform the required computations in the same clock cycle, provided
that a su�cient number of registers are available, and an e↵ective method to check
the results is devised. However, generating an optimized test program with mini-
mal size and duration may require a significant manual e↵ort, taking into account
both the test algorithms for each Functional Unit, and the specific VLIW processor
configuration: our test generation procedure provides an automatic solution for test
program generation, once the processor configuration and the test algorithms for
each FU are known.

VLIW processors do not include any specially designed hardware module (as
it happens for other processor types), but are rather based on a combination of
common Functional Units: exploiting this characteristic, our solution allows test
program generation and optimization to be performed autonomously and automat-
ically, without any manual e↵ort. The test programs generated by the proposed
method are highly optimized and exploit the VLIW processor features in order to
minimize the test time and the test program size. Moreover, since the method is
totally functional, it does not require the usage of any ATPG tool, nor the adoption
of any Design for Testability (DfT) technique. In principle, the proposed scheduling
technique is based on the same approach typically used by the VLIW compilers for
optimization purposes. However, the use of a compiler is not feasible for optimizing
a test program: in fact, in our case the optimization should maintain unchanged the
Fault Coverage of the original test program, while a compiler typically optimizes
the code by analyzing the function performed by the code (which in the case of a
test program is meaningless) and selecting the most suitable resources to be used
at each time step. For example, a typical VLIW compiler tries to optimize the
parallelism of the instructions exploiting the VLIW resources without any external
constraints; in the context of this PhD thesis, test programs are considered and
thus the instructions composing each piece of code have to be executed in a specific
Computational Domain and cannot be moved from one to another without modify-
ing the corresponding Fault Coverage. More in general, the test of a specific unit
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in a VLIW processor requires performing a well-defined sequence of instructions in
a well-defined Computational Domain. If the test program is encoded in a high-
level language and then the compiler is launch, there isn’t any way for forcing it to
generate a code which executes the given sequence of instructions on the functional
units of a given Computational Domain. Consequently, it is not possible to use a
VLIW compiler to generate the machine code for testing the processor, nor to use
it to optimize the test code.

The proposed method has been experimentally evaluated on a VLIW platform
based on the Delft University ⇢-VEX VLIW processor [65, 66] which supports most
of the features of industrial VLIW architectures. The achieved results clearly demon-
strate the e↵ectiveness of our approach on three di↵erent VLIW configurations: the
required test time for the 4, 6 and 8 Computational Domains configurations of the
⇢-VEX processor decreased of about 54%, 56% and 59% with respect to the corre-
sponding non optimized solution, respectively; considering, instead, the size of the
test programs, the reductions are 58%, 60% and 63%, respectively. The reached
fault coverage, for all the processor configuration is about 98%.

Beside the test methods, a second research work developed in the context of this
PhD thesis is related to the design and implementation of new diagnostic approaches.
In fact, reconfigurable processors [79] are increasingly used in di↵erent domains.
Their key characteristic lies in the fact that they can be easily configured to match
the specific requirements of the target application, e.g., in terms of performance,
size, and power consumption, thus possibly making them more convenient than
traditional processors. VLIW processors [62] represent a popular choice among
reconfigurable processors.

When dependability is a concern, dynamic reconfigurability is sometimes ex-
ploited: in this case the processor undergoes some test during the operational phase,
aiming at detecting possible faults with minimal latency. The test can be activated
either at a specific moment in time (e.g., at power on), or periodically. As soon
as a permanent fault is detected, a diagnostic procedure is activated to locate the
faulty partition, so that it can be substituted with a spare one, thus restoring the
system integrity. This scheme requires first of all the availability of an e↵ective test
procedure, able to detect the highest percentage of possible faults while matching
the requirements of a test performed during the operational phase (e.g., in terms
of duration, size, invasiveness); when considering VLIW processors, some previous
works in the area [72, 74] showed that these goals can be achieved resorting to an
approach, in which a suitable test program is executed and the behavior of the
processor during the execution (e.g., in terms of produced results) is observed. As
already explained in the previous paragraphs, test based on such an approach is
sometimes referred to as SBST, and some authors proved that e↵ective SBST test
programs can be generated even starting from RT-level descriptions [80]. The regu-
lar structure of VLIW processors may ease the task of generating the test program,
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which is often cumbersomely hard for conventional processors. Some recent work
demonstrated that test program generation can be even automated in the case of
VLIW processors. The SBST approach is often preferred for the above purpose to
the structural approach (e.g., based on scan) mainly due to its easier usage during
the operational phase.

Once a fault has been detected, the application execution is typically suspended
on the faulty processor and a diagnostic procedure is activated, whose goal is to
identify the faulty partition out of those composing the processor: in this context
each partition represents the minimal unit that can be substituted if faulty. Once
again, diagnosis may be performed resorting to SBST, i.e., to the execution of a
suitable test program, whose results allow identifying the faulty partition [69].

In this PhD thesis the issue of writing a diagnostic SBST test program for a
VLIW processor is also addressed. The proposed approach is based on exploiting
an existing test program (targeting to fault detection, only), and on applying a set
of techniques for improving it so that it can hold su�cient diagnostic properties.
The basic idea behind these techniques is to exploit the regularity and parallelism
characterizing a VLIW processor: in particular, the technique proposed in this PhD
thesis is based on splitting the original test program in small pieces (called frag-
ments), and then modifying each fragment in such a way that it performs the same
operation using di↵erent resources (e.g., di↵erent registers, or di↵erent ALUs). By
checking which ones of the replicas of the original fragment (called brother frag-
ments) generate a misbehavior, the faulty module could be identified. Since the
basic motivation for this work is to support the design of highly dependable systems
based on dynamic reconfiguration, the goal of our diagnostic approach is to identify
the faulty module, rather than the specific fault responsible for a given misbehavior,
as done in other works (e.g., [81]). A similar approach was followed in [82], where
the issue of self-adapting the test so that it takes into account possible units which
have been already labeled as faulty is considered. However, no one of the previous
works give a systematic method to generate diagnosis-oriented test programs, as
done in this PhD thesis.

The proposed method has been experimentally evaluated resorting to a sam-
ple VLIW processor [66]: an existing test program (developed with the approach
explained in the next sections) has been modified and improved, thus obtaining a
diagnostic test program whose characteristics (in terms of size, duration and diag-
nostic capabilities) have been evaluated and compared with those of the original
test program. It has been proved that the method is able to significantly improve
the diagnostic capabilities of the test program, and to allow the identification of the
faulty unit in a high percentage of cases.

In the next sections the details of this research works are presented.
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CD0: ADD $r0.3= $r0.2, $r0.1
CD1: MUL $r0.5= $r0.9, $r0.11
CD2: MUL $r0.7= $r0.9, $r0.11
CD4: SUB $r0.7= $r0.9, $r0.11

CD0: SHL $r0.12= $r0.2, 1
CD1: SHR $r0.15= $r0.9, 3
CD2: SHL $r0.17= $r0.9, 1
CD4: CMP $b0.0= $r0.5, 256

Label_1:

Bundle 1

Bundle 2

Bundle 3
CD0: ADD $r0.19= $r0.10, 128
CD1: nop
CD2: nop
CD4: BR $b0.0, Label_1

…

…

VLIW code

Figure 3.1. An example of VLIW code [61].

3.2 VLIW processors main features

A VLIW processor is characterized by the fact that all the operations are executed
by parallel Computational Domains (CDs), each characterized by its own Functional
Units (FUs); the scheduling is completely static, being fully defined at the compile
time, as described in Figure 3.1. As illustrated in Figure 3.2, the assembly code for a
VLIW processor is rather di↵erent from the point of view of the machine code from
that for a superscalar processor: several instructions are grouped together in a single
macro-instruction (also called Bundle) and each instruction is assigned for execu-
tion to a specific Computational Domain (CD). Consequently, in a VLIW processor
there isn’t any hardware instruction scheduler, and the tasks typically performed
by this component are done by the compiler. In this way the power consumption
is reduced and the silicon area occupied is far less that the area occupied by a tra-
ditional superscalar processor, while the design complexity is dramatically reduced;
on the other side, the Instruction Level Parallelism can be adequately exploited (at
least in the case of data intensive applications), since for many Digital Signal Pro-
cessing applications a good compiler is able to understand which instructions can be
executed in parallel checking the whole program at compile time [64] and generating
the optimized program accordingly.

Finally, given their high regularity, VLIW architectures can be easily customized
to e�ciently perform any given application. In fact, a generic VLIW processor para-
metric architecture may have a variable number of CDs and FUs, so that di↵erent
options, such as the number and type of functional units, the number of multi-
ported registers (i.e., the size of the register file), the width of the memory buses
and the type of di↵erent accessible FUs, can be modified to best fit the application
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Figure 3.2. Di↵erence between a superscalar and a VLIW processor.

requirements [36, 66]. All the features of a VLIW processor are grouped together
and listed in the so called VLIW manifest. The manifest specifies the number of
CDs, the number and type of FUs embedded into each CD, the size and the access
mode of the register file and any other feature that must be taken into account
when developing the code, such as the memory size and the memory access mode.
Moreover, this file contains also the description of the Instruction Set Architecture
(ISA) of the considered VLIW processor, which is clearly crucial in order to write
the corresponding assembly code.

From the software point of view, the machine code is very di↵erent with respect
to the code of traditional superscalar processors: the VLIW code is composed of a
sequence of bundles, each of which contains a number of instructions equal to the
number of CDs composing the VLIW processor; each instruction is assigned to a
CD which is responsible for its execution. In Figure 3.1, an example of VLIW code
is reported, based on the assembly code of a VLIW processor having four distinct
CDs [61]: the assumption behind this work is that for each bundle there are four
instructions. Considering these features, the VLIW code is more complex than a
traditional assembly code, and the size of the code is typically larger. The mapping
of instructions to CDs is entirely performed at compile time. It is also up to the
compiler to identify the most suitable instructions to be included in each bundle,
while guaranteeing that they can be executed in parallel by the di↵erent CDs taking
into account any possible dependency; if for some reasons there are not enough
independent instructions to be assembled into a bundle, the remaining slots are
filled with NOP instructions.

Considering the particular architecture of the VLIW processor, several solutions
have been proposed in order to produce the assembly code suitable for this kind

33



3 – The proposed SBST and diagnostic methods for VLIW processors

of processors: when generating code for a VLIW processor, the programmer or the
compiler is faced with the issue of extracting parallelism from a sequential code and
scheduling independent operations, concurrently, to the embedded functional units.
For this reason the scheduling algorithms are critical to the performance of a VLIW
processor. Many compilers for the first-generation of VLIW processors used a three
phases method to generate code: first of all they generate a sequential program,
then they analyze each basic block (a basic block is a sequence of instructions with
a single entry point and a single exit point) in the sequential program looking for
independent operations, and finally they schedule independent operations within the
same block in parallel. The main problem of this approach is that in many cases the
instructions in a basic block are dependent on each other: hence, insu�cient ILP
may be available within a single basic block, especially considering the large number
of parallel resources of a typical VLIW processor. The Trace Scheduling [67, 68] is
the most important scheduling algorithm, if VLIW processors are considered: it is
a profile driven method where a set of commonly executed sequence of basic blocks
embedded in the control flow is gathered together into a trace and the whole trace
is scheduled together. In this way, the probability of assigning an operation to each
functional unit increases since in a trace the possibility to find instructions that can
be executed together at the same clock cycle is greater than when considering a
single basic block.

3.3 Case study: the ⇢-VEX processor

In this section the main features of the ⇢-VEX processor, used as case study, are
described. The ⇢-VEX processor is a generic and reconfigurable VLIW processor
whose VHDL description has been released by researchers from Delft University of
Technology [65, 66]; it includes most of the features of the VLIW processors used by
industry. The processor standard configuration (Figure 3.3) consists of a four stages
pipeline organization: fetch, decode, execute and write-back. The fetch unit fetches
a VLIW macro-instruction from the attached instruction memory and splits it into
micro-instructions, that are passed, in parallel, to the decode unit. In this step the
decoding operations are performed and the registers used as operands are fetched
from the register file. The micro-instructions are then forwarded to the parallel
execution units; as shown in Figure 3.3, for each execution unit there is an ALU
unit (A); within the second and the third execution units there is also a MUL unit
(M).

In order to prove the e↵ectiveness of the proposed test and diagnostic methods,
three di↵erent configurations of the ⇢-VEX VLIW processor have been implemented:
the key di↵erence between these versions is the number of Computational Domains
composing the processor itself, which has been varied from 4 to 8. Each of these
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Figure 3.3. The standard configuration of the ⇢-VEX VLIW processor.

processor configurations is described in a manifest, corresponding to a ASCII file
containing the features of the resources and the ISA of the processor.

3.4 The new SBST method

In this section the new developed SBST techniques, along with some related works
and experimental results, are presented.

3.4.1 Related Works

Popular techniques to test processor chips and Systems-On-Chip are Built-In Self-
Test (BIST) and Software-Based Self-Test (SBST). Some methodologies may require
very expensive Automatic Test Equipment (ATE); however, the increasing gap be-
tween maximum ATE frequencies and device operating frequencies makes external
at-speed testing problematic and expensive; at-speed testing is needed because of
failures detectable only when the test is performed at the device operating frequency.

BIST moves the testing task from external resources (ATE) to internal hardware:
additional hardware is integrated into the circuit to allow it to perform self-testing.
The use of this technique leads to decrease the test time, maintaining or improving
the fault coverage, at the cost of additional silicon area [64].
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A special type of on-chip testing is SBST [36], that is a non-intrusive method-
ology, since it adopts existing processor resources and instructions to perform self-
testing. A major advantage of this technology is that it uses only the processor
functionality and its instruction set for both test pattern application and output
data evaluation, and thus does not introduce any hardware overhead in the design.
However, software-based self-test methods may su↵er from long program sequences
to achieve high fault coverage [36, 43], and require e↵ective techniques for generating
suitable test programs.

In the literature there are many papers related to functional self-test of proces-
sors, but only a few of them refer to the test of VLIW processors [64, 69, 70, 71, 72].
In [64] a novel SBST algorithm aimed at testing the Register File of a generic VLIW
processor is resented; the register file of a VLIW processor has a multi-port archi-
tecture, since this component must be accessed by all the Computational Domains.
In detail, a single Computational Domain can access each register both in writing
and reading through the use of write-ports and read-ports; this means that inter-
nally the register file of a generic VLIW processor has the architecture of a complex
cross-bar. Considering this structure, a new SBST algorithm able to achieve high
fault coverage with respect to stuck-at faults has been developed. The gathered ex-
perimental results show that this algorithm achieves up to 97.12% of fault coverage
with respect to stuck-at faults. The method proposed in [64] has been developed
addressing stuck-at faults, but it is extensible to deal with di↵erent fault models,
such as transition delay faults.

Another technique aimed at testing VLIW processors combining scan and SBST,
in order to obtain a good diagnostic resolution with a low hardware overhead, is
proposed in [70]. The peculiarity of that approach, aimed at detecting faults in the
functional units of the processor, is that the same test patterns are loaded directly
into the fetch registers of all Computational Domains. The proper functioning of
each domain is tested by comparing the test response of all domains, which should
be the same in the fault-free case. This solution involves a hardware overhead of
about 6% and requires that the processor runs in a special self-test mode.

In [69] the authors propose a Built-In Self-Repair (BISR) strategy for VLIW
processors based on SBST; this approach is able both to detect faults and to identify
the most convenient configuration able to tolerate them, if faults are located in
components that have redundant elements. Considering the SBST technique, the
main idea of that approach is to use the Instruction Set Architecture (ISA) in order
to apply the test patterns generated o↵-line by an automatic test pattern generator
(ATPG) for the units embedded into the processor.

In [71] a method is proposed that exploits the idle cycles of the VLIW Functional
Units to run test instructions for detecting permanent faults, without increasing
the hardware cost or significantly impacting the performance. In that approach
the authors assume that for each functional unit a test set is available for testing
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permanent faults (the test set may consist of pseudorandom patterns or deterministic
ones from the literature [13]) but no details are provided about their generation for
the considered VLIW architecture.

In [72] a software methodology is proposed for VLIW processors for detecting
faults based on the execution of each operation twice on two di↵erent Functional
Units exploiting the idle computational resources and checking the redundant results
through control instructions. This approach is a valid solution for detecting both
permanent and temporary faults exploiting only the ISA of the VLIW processor,
but the performance degradation, mainly due to the checking instructions, and the
code growth (more than 100% on the considered benchmarks) are significant.

Considering the test program generation process, in [73] the method for generat-
ing SBST programs for a whole VLIW processor is presented, starting from existing
test algorithms developed for traditional processors. In particular, the method ad-
dresses the Functional Units (such as the ALUs and the MULs), embedded into a
VLIW processors and explains how to combine them in a single test program for
the whole processor.

3.4.2 The SBST method

The new SBST method proposed in this PhD thesis aims at automatically generat-
ing the test program for a given VLIW processor starting from the VLIW manifest
and from a library of existing SBST programs. The generation of the test pro-
gram is automatically performed on the basis of the VLIW configuration, and is
therefore autonomously tuned depending on the VLIW manifest features. The flow
supports some optimizations concerning the execution time, the fault coverage and
the code length, and these optimizations are not correlated to the characteristics of
the original test routines.

The execution flow is based on four main steps: the Fragmentation, the Cus-
tomization, the Selection and the Scheduling, as illustrated in Figure 3.4. The flow
has three initial inputs, that include two global requirements (the VLIW manifest
and the library of generic SBST programs), and a specific input (the SBST program
for testing the VLIW register file). The VLIW manifest contains all the features
of the processor under test, while the SBST library contains a set of programs able
to test the di↵erent modules within the processor itself. These two requirements
are defined as global since they are configurable depending on the characteristics of
the addressed VLIW processor. In particular, the library is a collection of generic
SBST programs based on literature test algorithms: it contains the functional test
code able to test the most relevant Functional Units of a generic VLIW processor.
The test codes stored into the library are purely functional (i.e., do not require any
DfT feature) and are completely independent on any physical implementation of
the Functional Unit they refer to; these codes may be based on the techniques used
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to test the same Functional Units when used in conventional processors. Their de-
scription exploits a pseudo-code based on C-language. On the other side, when the
register file is considered, the algorithm proposed in [64] can be successfully used,
since the structure of a register file of a superscalar processor is very di↵erent with
respect to the register file of a VLIW processor, especially considering the access
mode to the registers: in a typical VLIW processor, the register file is composed of a
variable number of read and write ports, depending on the number of Computational
Domains embedded into the processor [64]; consequently a special algorithm must
be used in order to reach high fault coverage. These requirements are elaborated by
the several steps of the developed flow; hereafter the details of each of these steps
are described.

The Fragmentation phase

The purpose of the Fragmentation phase is to minimize the number of test opera-
tions in order to create e�cient and optimized test programs. The Fragmentation
phase, illustrated in Figure 3.4 - Step A, performs two main tasks: the first is the
selection from the library of the test programs needed to test the VLIW processor
under test, ignoring those which refer to Functional Units that are not part of the
processor itself. The second task performed by this step is to fragment each selected
test program into a set of small pieces of code, called Fragments, containing few test
operations and the other instructions needed to perform an independent test. The
result of the fragmentation phase is a set of unique test Fragments, where each Frag-
ment is normally built around a single test instruction and includes some preliminary
instructions, required to correctly perform it, and some additional instructions to
forward the produced results into observable locations [78]; a Fragment is described
through architecture-independent code. A test program is typically composed of a
set of test operations enclosed in a loop; the Fragmentation phase simply separates
them in a series of short test programs using the Loop Unrolling technique, as shown
into the pseudo-code reported in Figure 3.5. The Fragmentation phase is required in
order to optimize the code, since VLIW processors are composed of multiple parallel
Computational Domains that perform the execution of the operations in parallel,
as described in section II. Due to this feature, when a SBST program is executed
with the aim of testing a particular unit, at the same time other operations are also
executed on the other parallel units. As a consequence, as it is shown in Figure
3.6for a sample VLIW processor, by applying the SBST program for the test of the
VLIW register file [64], several faults belonging to other Functional Units, (e.g. the
adders and the MEM unit), are also covered. The main idea behind test program
fragmentation is to divide the original programs in atomic test units in order to
e↵ectively evaluate each one of them; in this way multiple fault coverage is avoided
and the test code can be optimized in terms of test time and used resources. At the

38



3 – The proposed SBST and diagnostic methods for VLIW processors

Fragmentation

Customization

Fragments 
Library

Library of 
generic SBST 

programs

Custom 
Fragments 

Library

Fault Simulation

Selection

Scheduling

VLIW Test 
program

VLIW 
manifest

Step A

Step B

Step C

SBST 
Register 

File VLIW

Step D

Init.
requirements

Figure 3.4. The flow of the proposed method.

end of the Fragmentation phase a new library called Fragments Library is obtained,
that contains the set of architecture-independent Fragments. A simple example of
Fragment is show in Figure 3.7: it is composed of a single test instruction, that
performs an addition between two values, two preliminary instructions, that assign
a value at the registers used by the test instruction, and an additional instruction
used to forward the result of the test instruction into the memory.
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register file is composed of a variable number of read and 
write ports, depending on the number of Computational 
Domains embedded into the processor [4]; consequently a 
special algorithm must be used in order to reach high fault 
coverage. 

These requirements are elaborated by the several steps of 
the developed flow; hereafter we will describe the details of 
each of these steps. 

A. Fragmentation 
The purpose of the Fragmentation phase is to minimize the 

number of test operations in order to create efficient and 
optimized test programs. The Fragmentation phase, illustrated 
in Fig. 3 Step A, performs two main tasks: the first is the 
selection from the library of the test programs needed to test 
the VLIW processor under test, ignoring those which refer to 
Functional Units that are not part of the processor itself. The 
second task performed by this step is to fragment each 
selected test program into a set of small pieces of code, called 
Fragments, containing few test operations and the other 
instructions needed to perform an independent test. The result 
of the fragmentation phase is a set of unique test Fragments, 
where each Fragment is normally built around a single test 
instruction and includes some preliminary instructions , 
required to correctly perform it, and some additional 
instructions to forward the produced results into observable 
locations [21]; a Fragment is described through architecture-
independent code. A test program is typically composed of a 
set of test operations enclosed in a loop; the Fragmentation 
phase simply separates them in a series of short test programs 
using the Loop Unrolling technique, as shown into the pseudo-
code reported in Fig. 4. 

The Fragmentation phase is required in order to optimize 
the code, since VLIW processors are composed of multiple 
parallel Computational Domains that perform the execution of 
the operations in parallel, as described in section II. Due to 
this feature, when a SBST program is executed with the aim of 
testing a particular unit, at the same time other operations are 
also executed on the other parallel units. As a consequence, as 
it is shown in Fig. 5 for a sample VLIW processor, by 
applying the SBST program for the test of the VLIW register 
file [4], several faults belonging to other Functional Units, 
(e.g. the adders and the MEM unit), are also covered. The 
main idea behind test program fragmentation is to divide the 
original programs in atomic test units in order to effectively 
evaluate each one of them; in this way multiple fault coverage 
is avoided and the test code can be optimized in terms of test  
time and used resources. 

At the end of the Fragmentation phase a new library called 
Fragments Library is obtained, that contains the set of 
architecture-independent Fragments . A simple example of 
Fragment is show in Fig. 6: it is composed of a single test 
instruction, that performs an addition between two values, two 
preliminary instructions, that assign a value at the registers 
used by the test instruction, and an additional instruction used 
to forward the result of the test instruction into the memory.  

 
1. for each cycle C of the loop L { 

1.1. S = set of performed operations; 
1.2. PI = input pattern applied to S into 

the cycle C; 

1.3. R = expected results performing S 
using PI as input pattern; 

1.4. GENERATE_NEW_FRAGMENT (PI, S, R); } 
 

Fig. 4.The pseudo-code of the Fragmentation phase. 
 

 
 

Fig. 5. The coverage of the SBST program for the register file with respect to 
the other modules of the processor. 

 
1. R_src1  =  All  0’s;; 
2. R_src2  =  All  1’s;;      
3. R_dst = add (R_src1, R_src2);  
4. Store (R_dst, memory);  

 

Fig. 6. An example of Fragment, where t he instructions 1 and 2 set the 
registers used by the test instruction (3), and instruction 4 makes the 
result observable. 
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Figure 3.5. The pseudo-code of the Fragmentation phase.
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specific input (the SBST program for testing the VLIW 
register file). The VLIW manifest contains all the features of 
the processor under test, while the SBST library contains a set 
of programs able to test the different modules within the 
processor itself. These two requirements are defined as global 
since they are configurable depending on the characteristics of 
the addressed VLIW processor. In particular, the library is a 
collection of generic SBST programs based on literature test 
algorithms [4],[17],[18],[19],[20]: it contains the functional 
test code able to test the most relevant Functional Units of a 
generic VLIW processor. The test codes stored into the library 
are purely functional (i.e., do not require any DfT feature) and 
are completely independent on any physical implementation of 
the Functional Unit they refer to; these codes may be based on 
the techniques used to test the same Functional Units when 
used in conventional processors. Their description exploits a 
pseudo-code based on C-language. On the other side, when the 
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where each Fragment is normally built around a single test 
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required to correctly perform it, and some additional 
instructions to forward the produced results into observable 
locations [21]; a Fragment is described through architecture-
independent code. A test program is typically composed of a 
set of test operations enclosed in a loop; the Fragmentation 
phase simply separates them in a series of short test programs 
using the Loop Unrolling technique, as shown into the pseudo-
code reported in Fig. 4. 
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the operations in parallel, as described in section II. Due to 
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it is shown in Fig. 5 for a sample VLIW processor, by 
applying the SBST program for the test of the VLIW register 
file [4], several faults belonging to other Functional Units, 
(e.g. the adders and the MEM unit), are also covered. The 
main idea behind test program fragmentation is to divide the 
original programs in atomic test units in order to effectively 
evaluate each one of them; in this way multiple fault coverage 
is avoided and the test code can be optimized in terms of test  
time and used resources. 

At the end of the Fragmentation phase a new library called 
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Figure 3.6. The coverage of the SBST program for the register file with respect
to the other modules of the processor.

The Customization phase

The customization step, illustrated in Figure 3.4 - Step B, is responsible for the
translation of the generic architecture-independent test programs into the VLIW
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Figure 3.7. An example of Fragment, where the instructions 1 and 2 set
the registers used by the test instruction (3), and instruction 4 makes the
result observable.
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3 – The proposed SBST and diagnostic methods for VLIW processors

code, exploiting the Instruction Set Architecture (ISA) of the considered processor.
In particular, starting from the Fragments Library and from the VLIW manifest,
the method translates each generic Fragment in a Custom Fragment, that can be
executed by the processor under test. A Custom Fragment is defined as a set
of instructions belonging to the ISA of the processor under test, which perform
several operations in order to test the addressed Functional Unit. An example of
the Customization process is shown in Table I, where the code of a Fragment before
and after the Customization phase is reported.

The two most relevant tasks performed by the Customization phase are the
definition of the resources needed to execute the code (such as the registers and
the memory areas required) and the introduction of the information, into the code,
that assign the execution of an instruction to a defined VLIW CD. An example of
instructions, before and after the customization, is illustrated in Figure 3.8; after
the customization, the instructions are grouped in macro-instructions, where each
macro-instruction is divided in CDs in charge of executing the addressed instruction.

Each Fragment is translated independently from the others; moreover, one archi-
tecture independent fragment can be translated into several architecture-dependent
fragments, according to the features listed in the VLIW manifest, such as the num-
ber of the CDs and the type of the functional units contained by each of them: for
example, if in the VLIW processor under test there are 4 adder units, one for each of
the 4 CDs, the generic Fragments related to the test of a generic adder are translated
into 4 architecture-dependent fragments, one for each adder unit embedded into the
CDs.

At the end of the Customization phase, each architecture-dependent Fragment is
fault simulated in order to get a detailed list of the faults covered by the specific test
program considering all the resources of the VLIW processor. Finally, a library called
Custom Fragments Library is obtained: it contains all the architecture-dependent
Fragments needed to test the processor under test and the list of faults covered by
each of them.

The Selection of the Custom Fragments phase

The selection of the custom fragments, illustrated in Figure 3.4 - Step C, consists
in the choice of the test fragments that optimize a set of rules dependent on the
requirements desired for the final SBST program. The optimization is performed
by the execution of the algorithm described in Figure 3.9; the algorithm is able
to implement two alternative rules. The former aims at selecting the minimum
number of Custom Fragments that allow to reach the maximum fault coverage with
respect to all the resources of the processor under test. During this phase all the
fragments are filtered depending on their fault coverage on the full VLIW processor.
The filtering of the fragments is performed by the execution of multiple algorithm
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B. Customization 
The customization step, illustrated in Fig. 3 Step B, is 

responsible for the translation of the generic architecture-
independent test programs into the VLIW code, exploiting the 
Instruction Set Architecture (ISA) of the considered processor. 
In particular, starting from the Fragments Library and from the 
VLIW manifest, the method trans lates each generic Fragment 
in a Custom Fragment, that can be executed by the processor 
under test. A Custom Fragment is defined as a set of 
instructions belonging to the ISA of the processor under test, 
which perform several operations in order to test the addressed 
Functional Unit. An example of the Customization process is 
shown in Table I, where the code of a Fragment before and 
after the Customization phase is reported.  

The two most relevant tasks performed by the 
Customization phase are the definition of the resources needed 
to execute the code (such as the registers and the memory 
areas required) and the introduction of the information, into 
the code, that assign the execution of an instruction to a 
defined VLIW CD. An example of instructions, before and 
after the customization, is illustrated in Table I; after the 
customization, the instructions are grouped in macro-
instructions, where each macro-instruction is divided in CDs 
in charge of executing the addressed instruction.  

Each Fragment is translated independently from the others; 
moreover, one architecture-independent fragment can be 
translated into several architecture-dependent fragments, 
according to the features listed in the VLIW manifest, such as 
the number of the CDs and the type of the functional units 
contained by each of them: for example, if in the VLIW 
processor under test there are 4 adder units, one for each of the 
4 CDs, the generic Fragments related to the test of a generic 
adder are translated into 4 architecture-dependent fragments, 
one for each adder unit embedded into the CDs. 

 
TABLE I.   

EXAMPLE OF THE TRANSLATION PERFORMED BY THE CUSTOMIZATION STEP 
Before Customization 
R  =  add  (All  0’s,  All  0’s);; 
Store(R , memory); 
After Customization 
;;----Macro-instruction 1---- 
CD0 : mov R1 = 0; 
CD1 : mov R2 = 0; 
;;----Macro-instruction 2---- 
CD0 : add R3 = R1, R2; 
;;----Macro-instruction 3---- 
CD0 : stw 0[R0] = R3; //R0 is the stack pointer 
;;--------------------------------  

 
At the end of the Customization phase, each architecture-

dependent Fragment is  fault simulated in order to get a 
detailed list of the faults covered by the specific test program 
considering all the resources of the VLIW processor. Finally, a 
library called Custom Fragments Library is obtained: it 
contains all the architecture-dependent Fragments needed to 
test the processor under test and the list of faults covered by 
each of them.  

C. Selection of the Custom Fragments 
The selection of the custom fragments, illustrated in Fig. 3 

Step C, consists in the choice of the test fragments that 

optimize a set of rules dependent on the requirements desired 
for the final SBST program. The optimization is performed by 
the execution of the algorithm described in Fig. 7; the 
algorithm is able to implement two alternative rules. The 
former aims at selecting the minimum number of Custom 
Fragments that allow to reach the maximum fault coverage 
with respect to all the resources of the processor under test. 
During this phase all the fragments are filtered depending on 
their fault coverage on the full VLIW processor. The filtering 
of the fragments is performed by the execution of multiple 
algorithm iterations. At each iteration the algorithm adds to 
the selected fragment list the fragments that maximize the 
fault coverage with respect to all the resources of the 
processor under test. In this way, at the end of the execution, 
several Custom Fragments are not selected, since the faults 
covered by these fragments are already covered by the 
fragments chosen by the algorithm.  

The second rule aims at optimizing the number of 
resources used by the selected Custom Fragments. Generally, 
this rule is aimed at reducing the number of used hardware 
resources, in terms of registers and memory locations. For the 
purpose of our method, we implemented the automatic flow 
allowing the user to specify the area constraints for each type 
of resource. On the basis of these constraints, the algorithm 
selects the Custom Fragments that allow to achieve the 
maximum fault coverage without using extra resources than 
those specified. In this way, the proposed method is able to 
generate test programs depending on the final requirements: 
for example, if the final goal is to generate test programs 
oriented to on-line testing, with the use of the proposed 
algorithm it is possible to generate test codes that uses only a 
limited set of registers and memory locations. 

 
1. FL = Fault List of the considered processor; 
2. CFL = Custom Fragments Library; 
3. SFL = Selected Fragments List;  
4. while ( CFL is not empty AND found) { 

4.1. select Fragment F that allows to 
maximize the coverage of FL; 

4.2. if (F exists){ 
 put F into SFL; 

 remove F from CFL; 

 found = TRUE; 
4.3. } else  

 found = FALSE; } 
 

Fig. 7. The pseudo-code of the algorithm for the selection of the Custom 
Fragments. 

D. The scheduling phase 
The last step of the proposed automatic test program 

generation flow is the Scheduling, illustrated in Fig. 3, Step D. 
The scheduling phase first elaborates the selected Custom 
Fragments obtained from the Selection phase. This process is 
responsible for the integration of the Custom Fragments in 
order to obtain an optimized and efficient final test program. 
In order to reach this goal, we developed a scheduler that 
optimizes and merges the codes contained into the Custom 
Fragments exploiting the VLIW features; in particular, it 
compacts the test programs trying to maximize the ILP of the 
VLIW processor by an optimal usage of the parallel CDs. In 
order to optimize the execution of the test instructions 

Figure 3.8. An example of the translation performed by the customization step.

iterations. At each iteration the algorithm adds to the selected fragment list the
fragments that maximize the fault coverage with respect to all the resources of the
processor under test. In this way, at the end of the execution, several Custom
Fragments are not selected, since the faults covered by these fragments are already
covered by the fragments chosen by the algorithm.

The second rule aims at optimizing the number of resources used by the selected
Custom Fragments. Generally, this rule is aimed at reducing the number of used
hardware resources, in terms of registers and memory locations. For the purpose of
our method, we implemented the automatic flow allowing the user to specify the area
constraints for each type of resource. On the basis of these constraints, the algorithm
selects the Custom Fragments that allow to achieve the maximum fault coverage
without using extra resources than those specified. In this way, the proposed method
is able to generate test programs depending on the final requirements: for example,
if the final goal is to generate test programs oriented to on-line testing, with the
use of the proposed algorithm it is possible to generate test codes that uses only a
limited set of registers and memory locations.

The Scheduling phase

The last step of the proposed automatic test program generation flow is the Schedul-
ing, illustrated in Figure 3.4 - Step D. The scheduling phase first elaborates the
selected Custom Fragments obtained from the Selection phase. This process is
responsible for the integration of the Custom Fragments in order to obtain an opti-
mized and e�cient final test program. In order to reach this goal, we developed a
scheduler that optimizes and merges the codes contained into the Custom Fragments
exploiting the VLIW features; in particular, it compacts the test programs trying to
maximize the ILP of the VLIW processor by an optimal usage of the parallel CDs.
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limited set of registers and memory locations. 

 
1. FL = Fault List of the considered processor; 
2. CFL = Custom Fragments Library; 
3. SFL = Selected Fragments List;  
4. while ( CFL is not empty AND found) { 

4.1. select Fragment F that allows to 
maximize the coverage of FL; 

4.2. if (F exists){ 
 put F into SFL; 

 remove F from CFL; 

 found = TRUE; 
4.3. } else  

 found = FALSE; } 
 

Fig. 7. The pseudo-code of the algorithm for the selection of the Custom 
Fragments. 

D. The scheduling phase 
The last step of the proposed automatic test program 

generation flow is the Scheduling, illustrated in Fig. 3, Step D. 
The scheduling phase first elaborates the selected Custom 
Fragments obtained from the Selection phase. This process is 
responsible for the integration of the Custom Fragments in 
order to obtain an optimized and efficient final test program. 
In order to reach this goal, we developed a scheduler that 
optimizes and merges the codes contained into the Custom 
Fragments exploiting the VLIW features; in particular, it 
compacts the test programs trying to maximize the ILP of the 
VLIW processor by an optimal usage of the parallel CDs. In 
order to optimize the execution of the test instructions 

Figure 3.9. The pseudo-code of the algorithm for the selection of the
Custom Fragments.

In order to optimize the execution of the test instructions composing the Custom
Fragments, we developed a new scheduling algorithm based on the Trace Scheduling
algorithm described in [67, 68].

The developed scheduling algorithm aims at optimizing the execution of the
testing code in a generic VLIW architecture, taking into account the possibility of
computing several instructions in a single clock cycle while maintaining the fault
coverage capabilities of the compacted code unaltered with respect to the gener-
ated Custom Fragments. Our solution organizes the code belonging to the Custom
Fragments in traces, which are loop-free sequences of basic blocks (a basic block
is a sequence of instructions with a single entry point and a single exit point) and
then squeezes a trace into few VLIW instructions. The scheduling algorithm we
developed is restricted with respect to the original version of the trace scheduling
algorithm, since in our test code (which is composed of several Custom Fragments
that must be performed only once) we neglected the loop management. First of all
the selected Custom Fragments are analyzed, looking for data dependencies among
the instructions: for each Fragment an Instruction Dependency Graph (IDG) is
created. More in details, a node exists in the IDG for each instruction in the frag-
ment code, while each edge between two nodes corresponds to a data dependency
between the corresponding instructions: hence, each edge corresponds to a physical
resource (i.e., a register or memory location) used to store the data produced by
one instruction and used by the other. During this phase, it is possible that two
or more instructions, belonging to di↵erent Custom Fragments and related to the
same Computational Domain, are identified as operations that perform the same job
(e.g., they write the same value into the same register); if this behavior is detected,
a unique IDG will be defined for the considered Custom Fragments, where only one
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of these micro-instructions will be considered, while the others will be neglected; in
this way the code functionality of the Custom Fragments remains unchanged, while
the number of instructions is reduced.

Aside from the Instruction Dependency Graph generated, a table called Resource
Usage Table, containing the details of the instructions executed is created. For each
instruction, a new entry in the table is instantiated, containing the instruction ID
and the identifier of the CD where the instruction must be executed; finally, each
entry has a priority field, which is initialized to 1. An example of the Dependency
Graph and of the Resource Use Table is reported in Figure 3.10.

The Dependency Graph and the Resource Use Table are then used by the de-
veloped trace scheduling algorithm in order to parallelize the code and provide an
optimal usage of the VLIW parallel resources. The flow of the trace scheduling
algorithm is illustrated in Figure 3.11. The managing of the instruction priority
represents the main di↵erence between the developed algorithm with respect to the
original Trace Scheduling, since in the original solution the priority is used to opti-
mize the frequently executed instructions if there are loops in the code, by a static
prediction of the loops. Since the Custom Fragments are generated with the loop
unrolling technique, as explain in Section 3.4.2, in the code composing each of them
there isn’t any loops; consequently, we can neglect the priority concept of the original
Trace Scheduling.

In the proposed solution the priority values are used to avoid that an instruction
goes in a starvation situation: when an instruction enters in the ready-set (which
is the set containing the instructions ready to be executed), it is allocated in a
given CD; in case the addressed CD is already occupied, the instruction remains in
the ready-set but its priority value is increased at each iteration of the algorithm;
with this method we guarantee that the priority value is higher for the instructions
that first entered in the ready-set; therefore, the longer is the persistence of an
instruction within the ready-set, the higher is its priority value. At the beginning
of the scheduling algorithm, when all the instructions have the same priority value
(fixed to 1 for default), the resource assignment is carried out randomly.

Considering the Instruction Dependency Graph and the Resource Use Table re-
ported in Figure 3.10, in Figure 3.12 few basic steps of the developed trace scheduling
algorithm are described. The considered VLIW processor is characterized by four
CDs. The algorithm tries to maximize the parallelism by assigning to each resource
an instruction; in our case, since the goal is to address the test of the resources, we
have to guarantee that the test coverage of the customized fragments remain un-
changed; therefore, it is not always possible to maximize the processor utilization,
since the instructions must be executed in a specific CD and the trace scheduling
algorithm avoids to change the execution units of an instruction with another one:
changing the FU for an instruction may lead to a change in the fault coverage value
computed in the previously described Customization step. The description of the
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performed steps is provided here:

Cycle 1 The instructions A, E, G are in the Ready-Set; A must be executed by the
Computational Domain (CD) 0, E by CD3 and G by CD0. A and G compete
for the same resource: since this is the first step and all the resources have
by default the same priority value (the default value is 1), the choice of which
instruction (between A and G) must be executed by CD0 is made randomly
and in this case A wins. Consequently, A is assigned to CD0 and E to CD3 (E
is the only instruction addressed on CD3); the instruction G remains in the
Ready-Set and its priority value is incremented.

Cycle 2 The instructions G, B, F are in the Ready-Set; G and B must be executed
by CD0 and F by CD3; since the priority value of G is higher that the priority
value of B, G is assigned to CD0, while F is assigned to CD3; the instruction
B remains in the Ready-Set and its priority value is incremented.

Cycle 3 The instructions B and H are in the Ready-Set; B must be executed in
CD0 and H in CD2. In this case there is no resource competition; consequently,
B is assigned to CD0 and H to CD2.

Cycle 4 The instructions C, D and I are in the Ready-Set; C must be executed in
CD1, D in CD3 and I in CD2. In this case there is no resource competition;
consequently, C is assigned to CD1, I is assigned to CD2 and D to CD3.

Cycle 5 The instructions X and J are in the Ready-Set; both X and J must be
executed in CD2. The priority value of both instructions is equal and con-
sequently the choice of which instruction must be executed by CD2 is made
randomly; in this case X wins. X is assigned to CD2 while J remains in the
Ready-Set and its priority value is increased.

Cycle 6 The instruction J is in the Ready-Set; J must be executed in CD2; J is
assigned to CD2.

As illustrated in Figure 3.12 , at the end of the algorithm execution, the column
M. Instr. contains the instructions that can be packed together in a single macro-
instruction executed in a single clock cycle.

3.4.3 The experimental results

As already explained in Section 3.3, in order to prove the e↵ectiveness of the pro-
posed method, three di↵erent configurations of the ⇢-VEX VLIW processor have
been generated; where the key di↵erence between these versions is the number of
Computational Domains composing the processor itself (which has been varied from
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composing the Custom Fragments, we developed a new 
scheduling algorithm based on the Trace Scheduling algorithm 
described in [8],[9]. The developed scheduling algorithm aims 
at optimizing the execution of the testing code in a generic 
VLIW architecture, taking into account the possibility of 
computing several instructions in a single clock cycle while 
maintaining the fault coverage capabilities of the compacted 
code unaltered with respect to the generated Custom 
Fragments. Our solution organizes the code belonging to the 
Custom Fragments in traces, which are loop-free sequences of 
basic blocks (a basic block is a sequence of instructions with a 
single entry point and a single exit point) and then squeezes a 
trace into few VLIW instructions. The scheduling algorithm 
we developed is restricted with respect to the original version 
of the trace scheduling algorithm, since in our test code (which 
is composed of several Custom Fragments that must be 
performed only once) we neglected the loop management. 

First of all the selected Custom Fragments are analyzed, 
looking for data dependencies among the instructions : for each 
Fragment an Instruction Dependency Graph (IDG) is created. 
More in details, a node exists in the IDG for each instruction 
in the fragment code, while each edge between two nodes 
corresponds to a data dependency between the corresponding 
instructions: hence, each edge corresponds to a physical 
resource (i.e., a register or memory location) used to store the 
data produced by one instruction and used by the other. 
During this phase, it is possible that two or more instructions, 
belonging to different Custom Fragments  and related to the 
same Computational Domain, are identified as operations that 
perform the same job (e.g., they write the same value into the 
same register); if this behavior is detected, a unique IDG will 
be defined for the considered Custom Fragments, where only 
one of these micro-instructions will be considered, while the 
others will be neglected; in this way the code functionality of 
the Custom Fragments remains unchanged, while the number 
of instructions is reduced. 

Aside from the Instruction Dependency Graph generated, a 
table called Resource Usage Table, containing the details of 
the instructions executed is created. For each instruction, a 
new entry in the table is  instantiated, containing the instruction 
ID and the identifier of the CD where the instruction must be 
executed; finally, each entry has a priority field, which is 
initialized to 1. An example of the Dependency Graph and of 
the Resource Use Table is reported in Fig. 8. 

The Dependency Graph and the Resource Use Table are 
then used by the developed trace scheduling algorithm in order 
to parallelize the code and provide an optimal usage of the 
VLIW parallel resources. The flow of the trace scheduling 
algorithm is illustrated in Fig. 9. The managing of the 
instruction priority represents the main difference between the 
developed algorithm with respect to the original Trace 
Scheduling, since in the original solution the priority is used to 
optimize the frequently executed instructions if there are loops 
in the code, by a static prediction of the loops. Since the 
Custom Fragments are generated with the loop unrolling 
technique, as explain in section IV.A, in the code composing 
each   of   them   there   isn’t   any   loops;;   consequently,   we   can  
neglect the priority concept of the original Trace Scheduling. 

 

 
Fig. 8. An example of Dependency Graph (a) and of the Resource Use 

Table (b), where P stands for Priority. 
 

In the proposed solution the priority values are used to 
avoid that an instruction goes in a starvation situation: when 
an instruction enters in the ready-set (which is the set 
containing the instructions ready to be executed), it is 
allocated in a given CD; in case the addressed CD  is already 
occupied, the instruction remains in the ready-set but its 
priority value is increased at each iteration of the algorithm; 
with this method we guarantee that the priority value is higher 
for the instructions that first entered in the ready-set; therefore, 
the longer is the persistence of an instruction within the ready-
set, the higher is its priority value. At the beginning of the 
scheduling algorithm, when all the instructions have the same 
priority value (fixed to 1 for default), the resource assignment 
is carried out randomly. 

Considering the Instruction Dependency Graph and the 
Resource Use Table reported in Fig. 8, we described in Table 
II the few basic steps of the developed trace scheduling 
algorithm. We refer for the example to a VLIW processor 
characterized by four CDs. The algorithm tries to maximize 
the parallelism by assigning to each resource an instruction; in 
our case, since the goal is to address the test of the resources, 
we have to guarantee that the test coverage of the customized 
fragments remain unchanged; therefore, it is not always 
possible to maximize the processor utilization, since the 
instructions must be executed in a specific CD  and the trace 
scheduling algorithm avoids to change the execution units  of 
an instruction with another one: changing the FU for an 
instruction may lead to a change in the fault coverage value 
computed in the previously described Customization step. The 
description of the performed steps is provided here: 
Cycle 1:  The instructions A, E, G are in the Ready-Set; A 
must be executed by the Computational Domain (CD) 0 , E by 
CD3 and G by CD0. A and G compete for the same resource: 
since this is the first step and all the resources have by default 
the same priority value (the default value is 1), the choice of 
which instruction (between A and G) must be executed by 
CD0 is made randomly and in this case A wins. Consequently, 
A is assigned to CD0 and E to CD3 (E is the only instruction 
addressed on CD3); the instruction G remains in the Ready-
Set and its priority value is incremented. 
Cycle 2:  The instructions G, B, F are in the Ready-Set; G and 
B must be executed by CD0 and F by CD3; since the priority 
value of G is higher that the priority value of B, G is assigned 
to CD0, while F is assigned to CD3; the instruction B remains 
in the Ready-Set and its priority value is incremented. 
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Dependency Graph Resource use and priorities

INSTR. RESOURCE P.
A C.D. 0 1
B C.D. 0 1
C C.D.1 1
D C.D. 3 1
E C.D. 3 1
F C.D. 3 1
G C.D. 0 1
H C.D. 2 1
I C.D. 2 1
J C.D. 2 1
X C.D.2 1

(a) (b)

Figure 3.10. An example of Dependency Graph (a) and of the Resource Use Table
(b), where P stands for Priority.
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Cycle 3:  The instructions B and H are in the Ready-Set; B 
must be executed in CD0 and H in CD2. In this case there is 
no resource competition; consequently, B is assigned to CD0 
and H to CD2. 
Cycle 4:  The instructions C, D and I are in the Ready-Set; C 
must be executed in CD1, D in CD3 and I in CD2. In this case 
there is no resource competition; consequently, C is assigned 
to CD1, I is assigned to CD2 and D to CD3. 
Cycle 5:  The instructions X and J are in the Ready-Set; both 
X and J must be executed in CD2. The priority value of both 
instructions is equal and consequently the choice of which 
instruction must be executed by CD2 is made randomly; in 
this case X wins. X is assigned to CD2 while J remains in the 
Ready-Set and its priority value is increased. 
Cycle 6:  The instruction J is in the Ready-Set; J must be 
executed in CD2; J is assigned to CD2. 

As illustrated in Table II, at the end of the algorithm 
execution, the column M. Instr. contains the instructions that 
can be packed together in a single macro-instruction executed 
in a single clock cycle.  
 
1. The first instruction of every dependency 

graphs is added at the Ready-Set; 
2. CC = Clock-Cycle = 0; 
3. While (Ready-Set contains entries) { 

3.1. For each Computational Domain CD{ 
 If exist an instruction I in the 
Ready-Set addressed to CD { 
 Assigns I at CD; 
 Remove I from Ready-Set; } 

3.2. Instructions free from data 
dependences are added to Ready-Set; 

3.3. Update the priority of the instruction 
of the Ready-Set; } 

 
Fig. 9. The developed scheduling algorithm based on the Trace 

Scheduling algorithm. 
 

TABLE II.   
FEW STEPS OF OUR VERSION OF THE T RACE SCHEDULING ALGORITHM. 

Cycle Ready-Set C.D. 0 C.D. 1 C.D. 2 C.D. 3 M. Instr. 
1 A E G A   E (A,E) 
2 G B F G   F (G,F) 
3 B H B  H  (B,H) 
4 C D I  C I D (C,I,D) 
5 X J   X  (X) 
6 J   J  (J) 
 

V. EXPERIMENTAL RESULTS 
In this section we present the experimental results obtained 

to validate the proposed method. For this purpose we selected 
the  ρ-VEX VLIW processor as a case study. 

The   ρ-VEX processor is a generic and reconfigurable 
VLIW processor whose VHDL description has been released 
by researchers from Delft University of Technology [5],[6]; it 
includes most of the features of the VLIW processors used by 
industry. The processor standard configuration (Fig. 9) 
consists of a four stages pipeline organization: fetch, decode, 
execute and write-back. The fetch unit fetches a VLIW macro-
instruction from the attached instruction memory and splits it 
into micro-instructions, that are passed, in parallel, to the 
decode unit. In this step the decoding operat ions are 

performed and the registers used as operands are fetched from 
the register file. The micro-instructions are then forwarded to 
the parallel execution units; as shown in Fig. 10, for each 
execution unit there is an ALU unit (A); within the second and 
the third execution units there is also a MUL unit (M). 

In order to prove the effectiveness of the proposed method, 
we developed three different configurations of   the   ρ-VEX 
VLIW processor: the key difference between these versions is 
the number of Computational Domains composing the 
processor itself, which has been varied from 4 to 8. Each of 
these processor configurations is described in a manifest, 
corresponding to a ASCII file containing the features  of the 
resources and the ISA of the processor. We generated one test 
program for each of these configurations applying the method 
previously described using a prototypical tool we developed, 
composed of about 3,000 lines of C code.  

To provide the reader with a reference point, we also 
selected 6 SBST programs from the literature 
[4],[17],[18],[19],[20] for testing the Functional Units 
embedded in the processor: each of them has been encoded in 
architecture-independent pseudo-code and has been inserted in 
the starting library. The total time required to manually 
prepare the three input files required by the method was 
approximately 30 hours.  At the end of the fragmentation step 
we obtained a Fragments Library composed of 520 
architecture-independent Fragments . 

 

 
 

Fig. 10.The standard configuration of the ρ-VEX VLIW processor [5][6]. 
 
In order to evaluate the stuck-at fault coverage achieved by 

the generated test programs, we synthesized and implemented 
the   ρ-VEX processor using a standard ASIC gate library. The 
assembly code generated following the described method has 
been inserted into the instruction memory; then, a fault 
simulation experiment has been performed.  

In Table III the obtained results, considering the standard 
configuration of the processor, are reported; in Table IV the 
results obtained adding 2 further Computational Domains (1 
ALU and 1 MUL) are reported; finally, in Table V we present 
the results related to the ρ-VEX processor composed of 8 
Computational Domains, where the number of embedded 
ALUs has been increased to 8 and that of MULs to 4. As the 
reader can notice, the reached fault coverage is almost the 
same for the three configurations of the processor.  

The details about the test programs generated through the 
proposed method and used to test the ρ-VEX processor are 
reported in Table VI, where the required number of clock 
cycles, the reached coverage and the size of the test programs 
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Figure 3.11. The developed scheduling algorithm based on the Trace
Scheduling algorithm.

4 to 8). As a consequence, one test program for each of these configurations has
been generated exploiting the method previously described. In particular a proto-
typical tool implementing the proposed method has been developed: it is composed
of about 3,000 lines of C code.

As reference point, 6 SBST programs from the literature [64, 75, 43, 76, 79] have
been selected, aimed at testing the Functional Units embedded in the processor:
each of them has been encoded in architecture-independent pseudo-code and has
been inserted in the starting library. The total time required to manually prepare
the three input files required by the method was approximately 30 hours. At the
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Cycle 3:  The instructions B and H are in the Ready-Set; B 
must be executed in CD0 and H in CD2. In this case there is 
no resource competition; consequently, B is assigned to CD0 
and H to CD2. 
Cycle 4:  The instructions C, D and I are in the Ready-Set; C 
must be executed in CD1, D in CD3 and I in CD2. In this case 
there is no resource competition; consequently, C is assigned 
to CD1, I is assigned to CD2 and D to CD3. 
Cycle 5:  The instructions X and J are in the Ready-Set; both 
X and J must be executed in CD2. The priority value of both 
instructions is equal and consequently the choice of which 
instruction must be executed by CD2 is made randomly; in 
this case X wins. X is assigned to CD2 while J remains in the 
Ready-Set and its priority value is increased. 
Cycle 6:  The instruction J is in the Ready-Set; J must be 
executed in CD2; J is assigned to CD2. 

As illustrated in Table II, at the end of the algorithm 
execution, the column M. Instr. contains the instructions that 
can be packed together in a single macro-instruction executed 
in a single clock cycle.  
 
1. The first instruction of every dependency 

graphs is added at the Ready-Set; 
2. CC = Clock-Cycle = 0; 
3. While (Ready-Set contains entries) { 

3.1. For each Computational Domain CD{ 
 If exist an instruction I in the 
Ready-Set addressed to CD { 
 Assigns I at CD; 
 Remove I from Ready-Set; } 

3.2. Instructions free from data 
dependences are added to Ready-Set; 

3.3. Update the priority of the instruction 
of the Ready-Set; } 

 
Fig. 9. The developed scheduling algorithm based on the Trace 

Scheduling algorithm. 
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3 B H B  H  (B,H) 
4 C D I  C I D (C,I,D) 
5 X J   X  (X) 
6 J   J  (J) 
 

V. EXPERIMENTAL RESULTS 
In this section we present the experimental results obtained 

to validate the proposed method. For this purpose we selected 
the  ρ-VEX VLIW processor as a case study. 

The   ρ-VEX processor is a generic and reconfigurable 
VLIW processor whose VHDL description has been released 
by researchers from Delft University of Technology [5],[6]; it 
includes most of the features of the VLIW processors used by 
industry. The processor standard configuration (Fig. 9) 
consists of a four stages pipeline organization: fetch, decode, 
execute and write-back. The fetch unit fetches a VLIW macro-
instruction from the attached instruction memory and splits it 
into micro-instructions, that are passed, in parallel, to the 
decode unit. In this step the decoding operat ions are 

performed and the registers used as operands are fetched from 
the register file. The micro-instructions are then forwarded to 
the parallel execution units; as shown in Fig. 10, for each 
execution unit there is an ALU unit (A); within the second and 
the third execution units there is also a MUL unit (M). 

In order to prove the effectiveness of the proposed method, 
we developed three different configurations of   the   ρ-VEX 
VLIW processor: the key difference between these versions is 
the number of Computational Domains composing the 
processor itself, which has been varied from 4 to 8. Each of 
these processor configurations is described in a manifest, 
corresponding to a ASCII file containing the features  of the 
resources and the ISA of the processor. We generated one test 
program for each of these configurations applying the method 
previously described using a prototypical tool we developed, 
composed of about 3,000 lines of C code.  

To provide the reader with a reference point, we also 
selected 6 SBST programs from the literature 
[4],[17],[18],[19],[20] for testing the Functional Units 
embedded in the processor: each of them has been encoded in 
architecture-independent pseudo-code and has been inserted in 
the starting library. The total time required to manually 
prepare the three input files required by the method was 
approximately 30 hours.  At the end of the fragmentation step 
we obtained a Fragments Library composed of 520 
architecture-independent Fragments . 

 

 
 

Fig. 10.The standard configuration of the ρ-VEX VLIW processor [5][6]. 
 
In order to evaluate the stuck-at fault coverage achieved by 

the generated test programs, we synthesized and implemented 
the   ρ-VEX processor using a standard ASIC gate library. The 
assembly code generated following the described method has 
been inserted into the instruction memory; then, a fault 
simulation experiment has been performed.  

In Table III the obtained results, considering the standard 
configuration of the processor, are reported; in Table IV the 
results obtained adding 2 further Computational Domains (1 
ALU and 1 MUL) are reported; finally, in Table V we present 
the results related to the ρ-VEX processor composed of 8 
Computational Domains, where the number of embedded 
ALUs has been increased to 8 and that of MULs to 4. As the 
reader can notice, the reached fault coverage is almost the 
same for the three configurations of the processor.  

The details about the test programs generated through the 
proposed method and used to test the ρ-VEX processor are 
reported in Table VI, where the required number of clock 
cycles, the reached coverage and the size of the test programs 
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Figure 3.12. Few steps of the proposed scheduling algorithm.

end of the fragmentation step we obtained a Fragments Library (see Figure 3.4)
composed of 520 architecture-independent Fragments.

In order to evaluate the stuck-at fault coverage achieved by the generated test
programs, the ⇢-VEX processor has been synthesized and implemented using a
standard ASIC gate library. The assembly code generated following the described
method has been inserted into the instruction memory; then, a fault simulation ex-
periment has been performed. For all the fault simulation experiments, the Synopsys
TetraMAX ATPG tool has been used [86].

In Table 3.1 the obtained results, considering the standard configuration of the
processor, are reported; in Table 3.2 the results obtained adding 2 further Compu-
tational Domains (1 ALU and 1 MUL) are reported; finally, in Table 3.3 the results
related to the ⇢-VEX processor composed of 8 Computational Domains are shown,
where the number of embedded ALUs has been increased to 8 and that of MULs to
4. As the reader can notice, the reached fault coverage is almost the same for the
three configurations of the VLIW processor used as case study.

The details about the test programs generated through the proposed method
and used to test the ⇢-VEX processor are reported in Table 3.4, where the required
number of clock cycles, the reached coverage and the size of the test programs are
shown. The generation time for each test program was approximately 40 hours,
of which about 95% used for the fault simulation of the Custom Fragments. The
computational time has been evaluated on a workstation with a quad-core processor
with frequency of 3 GHz and 8 GB of RAM.

The test programs (denoted as TP) generated implementing the proposed ap-
proach have been compared with a traditional test program (denoted as Plain TP),
consisting of several test programs developed using some algorithms taken from the
literature for the functional units of traditional processors; in the Plain TP these
test programs have simply been queued in a unique test program, without perform-
ing any selection or scheduling steps, therefore adopting a realistic test estimation
of what can be achieved with previously developed test algorithms without any op-
timization method. This is the only possible approach to have a comparison for the
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proposed method: in the literature there is no method aimed at optimizing the SBST
routines for VLIW processors exploiting the parallelism that characterizes these ar-
chitectures. In order to fairly evaluate the two solutions, these test programs have
been applied using the loop-unrolling technique, as it is common for any VLIW ap-
plication in order to fully exploit the parallel FUs. From Table 3.4 it is possible to
notice that with the proposed method it is possible to generate test programs that
allow to reduce the needed clock cycles to perform the test (see Figure 3.13) and to
lower the test program size (see Figure 3.14), while the fault coverage remains the
same. More in general, the results show that thanks to the proposed optimization
method, the duration of the test program grows less than linearly when increasing
the number of CDs of the target VLIW processor. Moreover, the user?s e↵ort is
minimized, since it is enough to specify the processor features in the manifest in
order to generate the appropriate test program for the generic VLIW processor.

Finally, the advantage of the proposed approach is significantly greater with
respect to traditional scan test techniques: in fact, in order to reach 100% of stuck-
at fault coverage, traditional scan test technique requires a number of clock cycles
greater than 3 orders of magnitude on the average, with respect to our solution, for
all the three configurations of the considered VLIW processor.

Table 3.1. Fault Simulation results for the version of the ⇢-VEX processor
composed of 4 CDs

⇢-VEX Component Faults[#] Fault Coverage
Fetch 2,156 99.2%
Decode 249,196 98.1%

Execute
4 ALUs 75,554 98.3%
2 MULs 37,244 98.6%
1 MEM 1,730 97.2%

Writeback 1,420 98.1%
Total 387,290 98.2%

3.5 The new Diagnosis method

In this section the new developed Diagnosis techniques for VLIW processors, along
with some related works and experimental results, are presented.
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Table 3.2. Fault Simulation results for the version of the ⇢-VEX processor
composed of 6 CDs

⇢-VEX Component Faults[#] Fault Coverage
Fetch 3,250 98.9%
Decode 290,135 98.0%

Execute
6 ALUs 113,316 98.3%
3 MULs 55,866 98.6%
1 MEM 1,730 97.2%

Writeback 2,130 98.1%
Total 466,427 98.1%

Table 3.3. Fault Simulation results for the version of the ⇢-VEX processor
composed of 8 CDs

⇢-VEX Component Faults[#] Fault Coverage
Fetch 4,312 98.8%
Decode 312,234 98.2%

Execute
8 ALUs 151,088 98.3%
4 MULs 74,488 98.6%
1 MEM 1,730 97.2%

Writeback 2,842 98.1%
Total 546,694 98.3%

Table 3.4. Comparison between the results obtained by applying some plain test
test programs and the proposed method

⇢-VEX config. Test Program Clock Cycles [#] Fault Coverage Size [kB]

4 CDs
Plain 18,540 98.2% 3,894
Proposed Method 8,447 98.2% 1,612

6 CDs
Plain 25,619 98.1% 5,841
Proposed Method 11,139 98.1% 2,304

8 CDs
Plain 32,699 98.3% 7,788
Proposed Method 13,132 98.3% 2,832
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are shown. The generation time for each test program was 
approximately 40 hours, of which about 95% used for the fault 
simulation of the Custom Fragments. The computational time 
has been evaluated on a workstation with a quad-core 
processor with frequency of 3 GHz and 8 GB of RAM.  

We also compared the test program (denoted as TP) 
generated by our approach with a test program (denoted as 
Plain TP) consisting of several test programs developed using 
some algorithms taken from the literature for the functional 
units of traditional processors; in the Plain TP these test 
programs have simply been queued in a unique test program, 
without performing any selection or scheduling steps, 
therefore adopting a realistic test estimation of what can be 
achieved with previously developed test algorithms without 
any optimization method. This is the only possible approach to 
have a comparison for the proposed method: to the best of our 
knowledge in the literature there is no method aimed at 
optimizing the SBST routines for VLIW processors exploiting 
the parallelism that characterizes these architectures. In order 
to fairly evaluate the two solutions, these test programs have 
been applied using the loop-unrolling technique, as it is 
common for any VLIW application. 

TABLE III.  FAULT SIMULATION RESULTS FOR THE VERSION OF THE Ρ-
VEX PROCESSOR COMPOSED OF 4 COMPUTATIONAL DOMAIN. 

ρ-VEX Components Faults [#] Fault 
Coverage  

Fetch 2,156 99.2% 
Decode 269,196 98.1% 

Execute 
4 ALUs 75,554 98.3% 
2 MULs 37,244 98.6% 
MEM 1,730 97.2% 

Writeback 1,420 98.1% 
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Fetch 4,312 98,8% 
Decode 312,234 98.2% 

Execute 
8 ALUs 151,088 98.3% 
4 MULs 74,488 98.6% 
MEM 1,730 97.2% 

Writeback 2,842 98.1% 
Total 546,694 98.3% 

 
From Table VI it is possible to notice that with the 

proposed method it is possible to generate test programs that 
allow to reduce the needed clock cycles to perform the test  
(Fig. 11) and to lower the test program size (Fig. 12), while 
the fault coverage remains the same. More in general, the 

results show that thanks to the proposed optimization method, 
the duration of the test program grows less than linearly when 
increasing the number of CDs of the target VLIW processor.  

Moreover,  the  user’s  effort  is  minimized,  since  it  is  enough  
to specify the processor features in the manifest in order to 
generate the appropriate test program for the generic VLIW 
processor.  

Finally, the advantage of our approach is significantly 
greater with respect to traditional scan test techniques : in fact, 
in order to reach 100% of stuck-at fault coverage, traditional 
scan test technique requires a number of clock cycles greater 
than 3 orders of magnitude on the average, with respect to our 
solution, for all the three configurations of the considered 
VLIW. 

TABLE VI.  COMPARISON BETWEEN THE RESULTS OBTAINED BY 
APPLYING SOME PLAIN TEST PROGRAMS AND THE PROPOSED METHOD. 

ρ-VEX 
configuration Test program 

Clock 
Cycles 

[#] 
Fault 

Coverage 
Size 
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4 
Computational 

Domains 

Plain TP 18,540 98.2% 3,894 

Proposed Method 8,447 98.2% 1,612 
6 

Computational 
Domains 

Plain TP 25,619 98.1% 5,841 

Proposed Method 11,139 98.1% 2,304 
8 

Computational 
Domains 

Plain TP 32,699 98.3% 7,788 

Proposed Method 13,132 98.3% 2,832 
 

 
Fig. 11.The reduction of the clock cycles using the proposed method with 

respect to the plain test-program. 
 

 
Fig. 12.The reduction of the size of the test program using the proposed 

method with respect to the plain test-program. 

VI. CONCLUSIONS AND FEATURE WORKS 
In this paper we presented the first method able to generate 

optimized Software-Based Self-Test programs for VLIW 
processors by exploiting the intrinsic parallelism existing in 
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are shown. The generation time for each test program was 
approximately 40 hours, of which about 95% used for the fault 
simulation of the Custom Fragments. The computational time 
has been evaluated on a workstation with a quad-core 
processor with frequency of 3 GHz and 8 GB of RAM.  

We also compared the test program (denoted as TP) 
generated by our approach with a test program (denoted as 
Plain TP) consisting of several test programs developed using 
some algorithms taken from the literature for the functional 
units of traditional processors; in the Plain TP these test 
programs have simply been queued in a unique test program, 
without performing any selection or scheduling steps, 
therefore adopting a realistic test estimation of what can be 
achieved with previously developed test algorithms without 
any optimization method. This is the only possible approach to 
have a comparison for the proposed method: to the best of our 
knowledge in the literature there is no method aimed at 
optimizing the SBST routines for VLIW processors exploiting 
the parallelism that characterizes these architectures. In order 
to fairly evaluate the two solutions, these test programs have 
been applied using the loop-unrolling technique, as it is 
common for any VLIW application. 

TABLE III.  FAULT SIMULATION RESULTS FOR THE VERSION OF THE Ρ-
VEX PROCESSOR COMPOSED OF 4 COMPUTATIONAL DOMAIN. 

ρ-VEX Components Faults [#] Fault 
Coverage  

Fetch 2,156 99.2% 
Decode 269,196 98.1% 

Execute 
4 ALUs 75,554 98.3% 
2 MULs 37,244 98.6% 
MEM 1,730 97.2% 
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generate the appropriate test program for the generic VLIW 
processor.  

Finally, the advantage of our approach is significantly 
greater with respect to traditional scan test techniques : in fact, 
in order to reach 100% of stuck-at fault coverage, traditional 
scan test technique requires a number of clock cycles greater 
than 3 orders of magnitude on the average, with respect to our 
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respect to the plain test-program. 
 

 
Fig. 12.The reduction of the size of the test program using the proposed 
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Figure 3.14. The reduction of the size of the test program using the proposed
method wrt the plain test-program.

3.5.1 Basics on Diagnosis

Let call

F = f0, f1, ..., fn�1 (3.1)

the set of n faults that can a↵ect the considered Unit Under Test (UUT). Each
of these faults causes the UUT to produce a given output behavior b (also called
syndrome) when a given sequence of Input Stimuli I is applied; let denote by bi the
output behavior produced by fault fi, and bg the output behavior of the fault-free
circuit. Clearly, bi = bg for all undetected faults fi.

When SBST is considered, the assumption is often made, that the output behav-
ior corresponds to the set of values left by the program in memory at the end of its
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execution. This assumption is make in the context of the diagnostic work presented
in this PhD thesis. The key rationale behind it is the ease of its implementation in
practice, when test (or diagnosis) are run during the operational phase. Therefore,
bi = bj i↵ the two faults fi and fj produce the same output values in memory at the
end of the execution of the test (or diagnosis) program. From a practical point of
view, storing a signature of the values produced by each fault may allow to easily
identify the existing faults. Alternative solutions avoiding the storage even of this
compressed form of fault dictionary can also be considered [84].

A given pair of faults (fi, fj) is said to be distinguished by a given sequence of
Input Stimuli I i↵ bi /= bj. Otherwise, they are said to be equivalent wrt I. All faults
that are equivalent wrt to a give sequence of input stimuli I are said to belong
to the same Equivalence Class (EC) wrt I. A detected fault fi is said to be fully
diagnosed by a sequence of input stimuli I i↵ any couple of faults (fi, fj) including
fi is distinguished by I. Since two faults fi, fj can never be distinguished if they are
functionally equivalent, the number of fully diagnosed faults in a circuit is typically
rather low.

Several possible metrics can be adopted to measure the diagnostic capabilities of
a sequence of input stimuli I [85]. When diagnosis is used in a reconfigurable system
for identifying the partition including the fault, the precision required is lower than in
other situations where diagnosis is required (e.g., for yield ramp-up): in fact, the final
goal in this case is to be able to distinguish all pairs of faults belonging to di↵erent
partitions, while distinguishing pairs of faults belonging to the same partitions is
not of interest. Hence, in the context of the diagnostic methods proposed in this
PhD thesis a metric called Diagnostic Capability, or DC(I), which corresponds to
the percentage of faults belonging to an EC wrt I composed of faults all belonging
to the same partition. In the ideal case in which DC(I) is 100%, this would mean
that I is able to always identify the partition where the fault is located. Finally,
the notion of Fully Diagnosed Fault with respect to Partitions (FDP) is also used,
which is a fault belonging to an Equivalence Class composed of faults all belonging
to the same partition. Clearly, DC(I) is the percentage of FDP faults with respect
to the total number of faults.

3.5.2 The method

In this section the proposed method aimed at generating the diagnostic programs
for a generic VLIW processor, once its specific configuration is known, is presented.

The proposed method, illustrated in Figure 3.15, is composed of two parts de-
noted as classification and brother fragment generation. Moreover, it requires two
main inputs. The former is the manifest of the VLIW processor under analysis,
which contains all the features of the processor itself (which is supposed to be orga-
nized into a few partitions). The latter is a collection of small test programs aimed
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As shown in Fig. 2, the flow aimed at the generation of the diagnostic program is 
composed of two main parts, denoted as classification and brother fragment genera-
tion. The result of these two steps is an accurate test program with an improved diag-
nostic capability.  

The proposed flow requires two main inputs. The former is the manifest of the 
VLIW processor under analysis, which contains all the features of the processor itself 
(which is supposed to be organized into a few partitions). The latter is a collection of 
small test programs aimed at fault detection, called fragments: each fragment per-
forms a few test instructions (aimed at exciting a specific fault or group of faults) plus 
some other instructions needed to prepare the required parameters and make the re-
sults of the test instruction observable. The fragments have been generated splitting 
the original SBST programs [4]: the fragments should contain the lowest possible 
number of instructions and detect the lowest possible number of faults (while still 
maintaining the same total fault coverage). The set of the initial fragments is called 
Initial Test Program.  

 
Fig. 2. The flow of the proposed diagnosis method. 

4.1 Classification 

The classification part aims at computing the Equivalence Classes with respect to the 
Initial Test Program. This task can be easily performed resorting to commercial Fault 
Simulation tools and its final result (which requires some further custom post-
processing) is the assignment of each fault either to an Equivalence Class composed 
of faults belonging to a single partition (in which case the fault is labeled as FDP) or 
to an Equivalence Class including faults belonging to different partitions. 

In practice, this phase requires performing the Fault Simulation of each fragment, 
then processing the data base storing the syndrome of each fault, and finally compu-
ting the Equivalence Classes. 

The result of this part of the method is the Fragment Partition Scenario, which con-
sists of a database storing for each partition the list of faults belonging to it as well as 
their syndrome.  
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Figure 3.15. The flow of the proposed diagnostic method.

at fault detection, called fragments: each fragment performs a few test instructions
(aimed at exciting a specific fault or group of faults) plus some other instructions
needed to prepare the required parameters and make the results of the test instruc-
tion observable. The fragments have been generated splitting the original SBST
programs (see Section 3.4.2 of this thesis): the fragments should contain the low-
est possible number of instructions and detect the lowest possible number of faults
(while still maintaining the same total fault coverage). Consequently, the diagnostic
capability of the fragments set is improved. The set of the initial fragments is called
Initial Test Program.

Classification

The classification part aims at computing the Equivalence Classes with respect to
the Initial Test Program. This task can be easily performed resorting to commercial
Fault Simulation tools (i.e., the Sinopsys TetraMAX tool [86]) and its final result
(which requires some further custom post-processing) is the assignment of each fault
either to an Equivalence Class composed of faults belonging to a single partition
(in which case the fault is labeled as FDP) or to an Equivalence Class including
faults belonging to di↵erent partitions. In practice, this phase requires performing
Fault Simulation of each fragment, and then processing the data base storing the
syndrome of each fault, computing the Equivalence Classes. The result of this part
of the method is the Fragment Partition Scenario which consists of a database where
for each partition the list of faults belonging to it, their syndrome and the associated
partition are stored.
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Brother Fragment Generation

The brother fragment generation phase is a flow oriented to the generation of new
diagnostic fragments capable to improve the overall custom fragment diagnostic
capability, thus increasing the DC(I) metric of the addressed VLIW partitions. The
flow, illustrated in Figure 3.16, is composed of four phases: (1) analysis of multiple
partitions, (2) couple faults extraction, (3) module identification, and (4) creation
of new fragments. The 4 phases are repeated until a given stopping condition (e.g.,
based on maximum computational time, or on the achieved diagnostic capabilities)
is reached.

The Analyze Multiple Partition phase elaborates the fragment partition scenario
database comparing equivalence classes including faults belonging to two partitions.
In details, for each couple of equivalence classes i and j, it compares all the fault
syndromes and provides the list of faults not distinguishable between i and j. Once
the list of faults is generated, the Couple Faults Extraction phase selects each couple
of two fault locations, one belonging to the partition i and the other belonging to j.

TheModule Identification phase identifies the location of the two faults analyzing
the fault location hierarchy with respect to the VLIW manifest information; the
result of this phase is the identification of the VLIW circuit resources involved by
each fault.

Finally, the Create New Fragments phase is executed. This phase is based on
the pseudo-code reported in Figure 3.17: basically, it elaborates the original test
fragments involved into the VLIW resource module identified by the Module Iden-
tification phase and generates a new set of fragments modifying the resource used
by the original test instructions. In this way, the final test program includes two
di↵erent fragments, which are supposed to fail alternatively, depending on whether
one or the other of the two partitions we want to distinguish are faulty.

The algorithm needs the code of the original test fragment (OF), the VLIW
manifest (VM) and the selected rule (R) which is provided by the module identi-
fication phase. There are two main rules that can be used for the generation of
the new fragments: the first, denoted as R1, is a register re-allocation rule and it
implies that the brother fragment will contain the same instructions of the original
one, but each instruction will use di↵erent registers. In this way, by checking the
results of the two fragment execution, we are able to understand if the fault is the
register file (in case the two fragments results are both wrong) or one of the other
VLIW module involved by the two fragments. The second rule, denoted as R2, is
a resource re-allocation rule: simply, the new brother fragment will use a di↵erent
VLIW Functional Unit to execute the test instruction of the fragment.

According to OF, VM, and R the algorithm analyzes the original test fragment
considering the used test instruction (TI), the VLIW functional unit (FU), the
registers used as operands (RI), and the registers used to forward the produced
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4.2 Brother Fragment Generation 

The brother fragment generation part is oriented to the generation of new diagnostic 
fragments capable to improve the overall custom fragment diagnostic capability, thus 
increasing the DC(I) metric of the addressed VLIW partitions. The flow, illustrated in 
Fig. 3, is composed of four phases: (1) analysis of multiple partitions, (2) couple 
faults extraction, (3) module identification and (4) creation of new fragments. The 4 
phases are repeated until a given stopping condition (e.g., based on maximum compu-
tational time, or on the achieved diagnostic capabilities) is reached. 

 
Fig. 3. The flow of the brother fragment generation. 

The  “analyze  multiple  partition”  phase  elaborates   the  fragment  partition  scenario  
database comparing equivalence classes including faults belonging to two partitions. 
In details, in this step, all the equivalence classes are compared and the couple of 
faults equivalent and belonging to different VLIW partitions are identified. 

Once the list of equivalent faults  is  generated,  the  “couple  faults  extraction”  phase  
selects each couple of two fault locations, one belonging to the partition i and the 
other belonging to j.  

The  “module  identification”  phase  identifies  the  location  of  the  two  faults i and j, 
analyzing the fault location hierarchy with respect to the VLIW manifest information; 
the result of this phase is the identification of the VLIW circuit resources involved by 
each fault.  

Finally,  the  “create new fragments”  phase  is  executed.  Basically, this phase elabo-
rates the original test fragments involved into the VLIW resource module identified 
by the Module identification phase and generates a new set of fragments modifying 
the resource used by the original test instructions. In this way, the final test program 
includes two or more different fragments, which are supposed to fail alternatively, 
depending on whether one or the other of the two partitions we want to distinguish are 
faulty. The pseudo-code of the Create New Fragments phase is reported in Fig. 4. 

The algorithm needs the code of the original test fragment (OF), the VLIW mani-
fest (VM) and the selected rule (R) which is provided by the module identification 
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Figure 3.16. The flow of brother fragment generation phase.

results to observable locations (RO). Finally, it selects a new set of resources and
on the basis of the defined rules it generates a new fragment.

In Figure 3.18, an example of original fragment and two corresponding brother
fragments is shown; in this example a fragment in which the test instruction aims
at the adder functional unit embedded in the Computational Domain 0 (referred as
CD0) is addressed. The first brother fragment has been generated according to the
rule R1 (i.e., the register re-allocation rule), in order to dismember an equivalence
class containing faults embedded in the register file and in the adder functional unit
of CD0. Consequently, the new brother fragment will be generated changing all the
registers used to perform the test instruction and to forward the result in the data
memory, without changing the functionality of the original fragment. The second
brother fragment, instead, has been generated with the rule R2 (i.e., the resource
re-allocation rule): practically, the test instruction of the original fragment has been
moved from the computational domain 0 to the computational domain 1, leaving
unaltered the other instructions composing the original fragment. In this way, if the
results of the two fragments are both wrong, the fault is definitely not embedded
in one of the two functional units executing the test instructions, but it belongs to
another module used by the two fragments.

3.5.3 The experimental results

In this section the experimental results obtained using the ⇢-VEX VLIW processor
as a case study are presented. For the purpose of this research work, the stuck-at
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Fig. 3. The flow of the brother fragment generation. 

The “Analyze multiple partition” phase elaborates the 
fragment partition scenario database comparing equivalence 
classes including faults belonging to two partitions. In details, 
for each couple of equivalence classes i and j, it compares all 
the fault syndromes and provides the list of faults not 
distinguishable between i and j. Once the list of faults is 
generated, the “Couple faults extraction” phase selects each 
couple of two fault locations, one belonging to the partition i 
and the other belonging to j. The “Module identification” phase 
identifies the location of the two faults analyzing the fault 
location hierarchy with respect to the VLIW manifest 
information; the result of this phase is the identification of the 
VLIW circuit resources involved by each fault. Finally, the 
“Create New Fragments” phase is executed. This phase is 
based on the pseudo-code reported in Fig. 4: basically, it 
elaborates the original test fragments involved into the VLIW 
resource module identified by the Module identification phase 
and generates a new set of fragments modifying the resource 
used by the original test instructions. In this way, the final test 
program includes two different fragments, which are supposed 
to fail alternatively, depending on whether one or the other of 
the two partitions we want to distinguish are faulty.  

The algorithm needs the code of the original test fragment 
(OF), the VLIW manifest (VM) and the selected rule (R) which 
is provided by the module identification phase. According to 
that information, it analyzes the original test fragment 
considering the used test instruction (TI), the registers used as 
operands and the registers used to forward the produced results 
to observable locations (step 4). Finally, it selects a new set of 
resources and on the basis of the defined rules it generates a 
new fragment (steps 5 and 6). 

An example of the brother fragment generation part is 
reported in Table I, where an Original Fragment and the 
corresponding Brother Fragment are shown; in this example 
we address a fragment in which the test instruction addresses 

the adder functional unit embedded in the Computational 
Domain 0 (referred as CD0 in Table I). In this case we 
suppose that the selected rule requires the register re-
allocation, in order to dismember an equivalence class 
containing faults embedded in the register file and in the adder 
functional unit of CD0. Consequently, the new brother 
fragment will be generated changing all the registers used to 
perform the test instruction and to forward the result in the 
data memory, maintaining unaltered the functionality of the 
original fragment. 

 
1. OF = Original Fragment; 
2. VM = VLIW Manifest; 
3. R  = Selected Rule; 
4. FL = Faults List; 
5. Analysis of the Original Fragment OF - 

Identification of: 
5.1. A: Test Instruction (TI); 
5.2. B: Instructions that set-up the 

registers used by TI; 
5.3. C: Instructions that forward  the 

produced results to observable 
locations; 

5.4. The registers used by A, B and C;  
6. Selection of the new resources, according 

with: 
• the selected rule R; 
• the VLIW Manifest VM; 

7. Brother Fragment Generation: Assigns to A, B 
and C the new resources, according with: 

• the selected rule R; 
• the VLIW Manifest VM; 

8. FL = Fault Simulation of the Brother 
Fragment. 

 
Fig. 4. The pseudo-code for the “create new fragments” phase. 

 
 

TABLE I. AN EXAMPLE OF THE GENERATION OF A BROTHER 
FRAGMENT FROM AN ORIGINAL FRAGMENT 

 
Original Fragment 

---< macro-Instruction 1 >--- 
CD0: mov $r0.1 = 11111…1 
CD1: mov $r0.2 = 00000…0 
---< macro-Instruction 2 >--- 
CD0: add $r0.3 = $r0.1, $r0.2  /*Test instr.*/ 
---< macro-Instruction 3 >--- 
CD0: stw 0[$r0.63] = $r0.3 
----------------------------- 

Brother Fragment 
---< macro-Instruction 1 >--- 
CD0: mov $r0.7 = 11111…1 
CD1: mov $r0.8 = 00000…0 
---< macro-Instruction 2 >--- 
CD0: add $r0.9 = $r0.7, $r0.8  /*Test instr.*/ 
---< macro-Instruction 3 >--- 
CD0: stw 0[$r0.63] = $r0.9 
----------------------------- 

 

V. EXPERIMENTAL RESULTS 
In this section we present the experimental results obtained 

using the ρ-VEX VLIW [10] processor as a case study. The ρ-
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Figure 3.17. The pseudo-code for the create new fragments phase.

fault model has been considered, although the method can be easily extended to
deal with other fault models. The total number of stuck-at faults related to the
⇢-VEX processor is 335,336. Moreover, the ⇢-VEX processor has been divided in 10
logic partitions: the fetch unit, the decode unit, the general-purpose register file, the
branch-management register file, the write-back unit, and the four Computational
Domains in which the functional units are embedded. Clearly, these partitions are
not uniform (in terms of number of contained resources).

Considering the diagnosis goal, in this Section only the most relevant partitions
of the ⇢-VEX processor are considered, i.e., the register file and the four Computa-
tional Domains (CD0 to CD3). The number of faults enclosed in each of the four
Computational Domains is not exactly the same, since some of the functional units
embedded in each of them are di↵erent: for example, CD0 includes a branch unit,
while CD3 embeds a memory access unit, while all the CDs include an ALU unit.

A program (composed of about 1,200 lines of C++ code) able to implement the
proposed method has been written: it is able to compare the fault lists generated
by the fault simulation step; the main goal of this program is to implement the
classification phase, i.e., performing the computation of the equivalence classes with
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original fragment. In this way, if the results of the two fragments are both wrong, the 
fault is definitely not embedded in one of the two functional units executing the test 
instructions, but it belongs to another module used by the two fragments.   

Table 1. An example of two brother fragments generated from the same original fragment. 

Original Fragment 
---< macro-Instruction 1 >--- 
CD0:  mov  $r0.1  =  11111…1 
CD1:  mov  $r0.2  =  00000…0 
---< macro-Instruction 2 >--- 
CD0: add $r0.3 = $r0.1, $r0.2  /*Test instr.*/ 
CD1: nop 
---< macro-Instruction 3 >--- 
CD0: stw 0[$r0.63] = $r0.3 
CD1: nop 
----------------------------- 

1st Brother Fragment – Rule R1 
---< macro-Instruction 1 >--- 
CD0: mov $r0.7 =  11111…1 
CD1: mov $r0.8 =  00000…0 
---< macro-Instruction 2 >--- 
CD0: add $r0.9 = $r0.7, $r0.8  /*Test instr.*/ 
CD1: nop 
---< macro-Instruction 3 >--- 
CD0: stw 0[$r0.63] = $r0.9 
CD1: nop 
----------------------------- 

2st Brother Fragment – Rule R2 
---< macro-Instruction 1 >--- 
CD0:  mov  $r0.1  =  11111…1 
CD1:  mov  $r0.2  =  00000…0 
---< macro-Instruction 2 >--- 
CD0: nop 
CD1: add $r0.3 = $r0.1, $r0.2  /*Test instr.*/ 
---< macro-Instruction 3 >--- 
CD0: stw 0[$r0.63] = $r0.3 
CD1: nop 
----------------------------- 

5 Experimental Results 

In this section we present the experimental results obtained using the ρ-VEX VLIW 
[12] processor  as  a  case  study.  The  ρ-VEX processor is a generic and reconfigurable 
VLIW processor written in VHDL language by researchers of the Delft University of 
Technology.  The  ρ-VEX processor includes most of the features of VLIW processors 
used by industry. For the purpose of this chapter, we considered the stuck-at fault 
model, although the method can be easily extended to deal with other fault models. In 
order to perform the stuck-at fault simulation experiments, we synthesized and im-
plemented  the  ρ-VEX processor using a standard ASIC gate library. The total number 
of stuck-at faults in the resulting netlist is 335,336. 

Figure 3.18. An example of the generation of a brother fragment from
an original fragment.

respect to the adopted test programs. The tool is also able to identifies FDP faults,
and provides information about the remaining faults.

As a starting test program the set of fragments used for the optimized generation
of an SBST program addressing the ⇢-VEX processor has been used; it has been
generated with the method proposed in Section 3.4; this set is a selection, from an
exhaustive set of possible fragments, of the fragments that allow to maximize the
stuck-at fault coverage, minimizing the test size and length.

The gathered experimental results are reported in Table 3.5, which includes the
percentage of FDP faults with respect to the total number of faults of each partition,
i.e., the Diagnostic Capability. The first column of Table 3.5 (denoted as Optimized
SBST) is the original test set, composed of 244 fragments; its diagnostic level is
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rather low for all the considered partitions, since this is optimized in terms of size
and length, which are often conflicting goals with respect to diagnosis. The stuck-at
fault coverage reached by this test program is 98.2% with respect to all the resources
of the considered VLIW processor.

The first step towards the improvement of the Diagnostic Capability is the use
of the whole fragments set generated resorting to the method described in Section
3.4. The results obtained with this approach are shown in the second column of
Table 3.5 . The improvement of the diagnosis resolution is greater when the register
file is considered (the improvement for this partition is more than 21%), while it is
limited for the Computational Domains. This is mainly because the considered set
of fragments is composed of 748 fragments, and 68% of them target the test of a
portion of the register file itself.

The final step of the proposed flow is the evaluation of the diagnostic capa-
bilities of an ad-hoc fragments set, composed of the fragments of the Exhaustive
Fragments Set with an additional set of fragments brothers, developed with the
proposed method. For the purpose of this research work, the brother fragments for
the fragments addressing the test of the ALUs have been generated: in fact, these
components are the most relevant of each CD in terms of number of stuck-at faults.
Moreover, we the brother fragments have been developed also for the memory unit
(which is embedded in CD3), since this unit is used by all the fragments in order to
save the results of the test instructions in the data memory; consequently, there are
many equivalence classes containing a fault belonging to this unit, and an e�cient
diagnostic of this module is required. The resulting set of fragments is composed
of 1,056 fragments, of which 308 are brother fragments. The CPU generation time
for the brother fragments was approximately 21 hours, of which about 85% used for
the fault simulation; the computational time has been evaluated on a workstation
with an Intel Xeon Processor E5450. As shown in Table 3.5, the improvements due
to this approach are evident if the partitions containing the ALUs (referred as CD1,
CD2, CD3 and CD4) are considered: the capability to recognize if a fault is enclosed
in one of these partitions is improved of about 8% with respect to the previous ap-
proaches. The resulting diagnosability is not uniform for all the four CDs since, as
explained previously, the functional units embedded into these partitions are not
the same.

An analysis about the Equivalence Classes wrt the last test set has been per-
formed, focusing on those that include faults belonging to more than one partition
(i.e., neglecting all FDP faults). Analyzing these equivalence classes, only, it is pos-
sible to notice that about 95% of them are classes only including faults belonging to
the same partition; moreover, if the remaining classes are considered, about 60% of
them are equivalence classes enclosing faults belonging to 2 partitions, while about
35% are classes enclosing faults belonging to 3 di↵erent partitions, as shown in the
graph of Figure 3.19. These results show that even when the diagnostic resolution
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of our method is not enough to identify the single partition including a fault, still
it is able to identify the couple of candidate partitions in about 60% of the cases.
Finally, in Table 3.6 some more information about the size and the execution time
of the final fragments set are shown. These results confirm that optimizations, in
terms of size and length, are often conflicting goals with respect to diagnosis.

Table 3.5. Diagnostic Capability

Partition Optimized SBST Exhaustive Fragments Set Proposed Approach
Register File 62.82% 84.23% 87.17%
CD0 77.12% 77.79% 83.74%
CD1 80.12% 81.56% 88.39%
CD2 79.99% 80.34% 88.23%
CD3 70.80% 72.14% 81.65%

Table 3.6. Size and duration of the di↵erent test sets.

Method Size [kB] Execution time [clock cycle]
Optimized SBST 1,926 10,601
Exhaustive Fragments set 3,429 17,049
Proposed Approach 4,899 24,356

As a conclusion of this research activity, in this Section the first method able
to generate optimized Software-Based Self-Test programs for VLIW processors (by
exploiting the intrinsic parallelism existing in the VLIW processors) has been pro-
posed. The method is fully automatic and allows to drastically reduce the e↵ort
of generating test programs for VLIW processors. The method has been exper-
imentally validated resorting to a representative VLIW processor and generating
test programs using a prototypical tool: the obtained results clearly demonstrate
the e�ciency of the method, that allows to reduce significantly both the number of
clock cycles and the memory resources with respect to test programs generated by
applying generic SBST methods to the specific case of the VLIW processors. More
in particular, the method shows that it is possible to develop test programs whose
duration and size grows less than linearly with the VLIW parallelism.

Another research work presented in this Section shows how the test programs
could be used for the diagnosis of the main Functional Units of a generic VLIW
processor. In this PhD thesis a new diagnostic method has been presented: it starts

58



3 – The proposed SBST and diagnostic methods for VLIW processors

Table 3. Size and duration of the different test sets 

Method Size [KBs] 
Execution time 
[Clock Cycles] 

Optimized SBST 1,926 10,601 
Exhaustive Fragments set 3,429 17,049 

Proposed Approach 4,899 24,356 
 
 
 

 

Fig. 5.  Analysis of Equivalence Classes including faults belonging to more than one parti-
tion. 

6 Equivalence Classes Analysis 

In this section, we present a detailed analysis aimed at (1) better understanding the 
achieved results, i.e., identifying the reasons that prevent the diagnostic metrics to be 
further increased, and (2) understanding how it is possible to reach a complete diag-
nosability of the partitions composing the addressed VLIW processor. Finally, we 
present an equivalence class-based technique aimed at improving the partitioning of 
the processor resources in order to achieve a scenario in which all the partitions are 
composed of a comparable number of logic resources, in order to make the proposed 
method suitable to be used in a dynamic partial reconfiguration environment [13]. 
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Figure 3.19. Analysis of Equivalence Classes including faults belonging to
more than one partition.

from existing detection-oriented programs, and generates a diagnosis-oriented test
program for a generic VLIW processor. The method exploits the parallelism (and
the presence of several alternative resources) intrinsic in VLIW processors to enhance
the original test program. The resulting diagnostic program is thus able in most
cases to identify the faulty module and is therefore highly suitable for being used
within reconfigurable systems.

59



Chapter 4

Reliability evaluation and
mitigation of GPGPUs

In this chapter, the research works, developed in the context of this PhD thesis,
finalized to the reliability evaluation and enhancement of General Purpose Graphics
Processing Units (GPGPUs) are presented; moreover, an exhaustive explanation of
the radiation tests performed to evaluate the proposed methods are explained, along
with the details of the NVIDIA devices used as case study.

In the last decade, new devices known as General Purpose Graphics Processing
Units (GPGPUs) made their appearance on the market. Their very high computa-
tional power, combined with low cost, reduced power consumption, and flexible de-
velopment platforms are pushing their adoption not only for graphical applications,
but also in the High Performance Computing (HPC) market. Moreover, GPGPUs
are increasingly used in some safety-critical embedded domains, such as automotive,
avionics, space and biomedical [87]. As an example, Advanced Driver Assistance
Systems (ADASs), which are increasingly common in cars, make an extensive usage
of the images (or radar signals) coming from external cameras and sensors to detect
possible obstacles requiring the automatic intervention of the breaking system.

However, several issues about the reliability of GPGPUs have been raised [16, 88].
Given their high degree of parallelism, many assume that GPGPUs could intrinsi-
cally provide a good degree of fault tolerance; however, their size and complexity
could make them particularly sensible to soft errors. Moreover, while hardening
techniques already exist for systems based on traditional CPUs, similar solutions for
GPGPU-based systems are still in their infancy [17]. The programming paradigm
adopted by GPUs (i.e., Single Instruction Multiple Data) can provide some ad-
vantages when designing hardening strategies, but requires e↵ective solutions to
combine detection and correction capabilities with the required high performance
characteristics.

When assessing the sensitivity of GPGPUs to radiation, a commonly adopted
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solution is performing radiation experiments with accelerated particles, counting
the number of errors they trigger. A major target of radiation e↵ects are GPGPU’s
memories, both standard and caches. Recently, manufacturers adopted Error Cor-
rection Code (ECC) mechanisms against Soft Errors a↵ecting all GPGPU memory
modules. In particular, some manufacturers like NVIDIA have recently introduced
the ECC scheme for GPGPUs oriented to High Performance Computing (HPC),
which is characterized by looser constraints on power consumption and area cost
than the embedded computing market. Vice versa, in GPGPUs designed for em-
bedded systems the ECC mechanism is still not available. Radiation errors on
memories may then significantly reduce the reliability of the device. Finally (and
more generally), few data are still available on the GPGPU memory soft-error rate,
so that quantitatively evaluating their reliability is still a hard task.

In this PhD thesis three di↵erent research works finalized to the reliability eval-
uation of GPGPUs are presented. The goals of these works are the investigation
of the sensitivity to soft-errors induced by terrestrial radiation e↵ects on GPGPUs,
thus evaluating their capability to produce correct results even when used for long
and massive computations in HPC data centers, and to work in harsh environments
and/or for safety-critical applications.

When adopting GPGPUs in these applications, a major target of radiation ef-
fects is represented by the caches, due to their size and their impact in increasing the
performance of the GPGPU [89]. Any radiation campaign focused on testing cache
soft-error sensitivity requires first forcing the memories to a given value, then expos-
ing the device to a given radiation fluence letting errors to accumulate, and finally
checking whether all the bits in the cache(s) are still holding the initial value. The
first and last steps are particularly critical, since caches are not directly accessible,
and relatively few information is delivered about the cache organization and archi-
tecture if commercial-o↵-the-shelf GPGPUs are considered. One of the motivations
of this work is that, traditionally, the manufacturers of electronic devices perform
several tests in order to measure the reliability of their devices ; however, for indus-
trial and confidentiality reasons normally this kind of data is not publicly available.
Only few manufacturers (e.g., Xilinx) provide the user with actual radiation-induced
error rate; to the best of our knowledge, no GPGPU manufacturer does so. More-
over, the GPU producers, like NVIDIA, are highly likely to know the soft-error
sensitiveness of the memory array they use, since this data may be provided by the
silicon manufacturer. Nevertheless, the operative soft error reliability of the memory
array when embedded in the final products may significantly di↵er from the stand
alone memory array. With the proposed method, it is possible to evaluate the cross
section and the FIT of the main memories used in the NVIDIA GPUs. In this PhD
thesis the method to successfully evaluated the GPGPU caches reliability is pre-
sented; it is mainly based on specially written programs, which are run immediately
before and after irradiating the GPGPU device with a given particles fluence. The
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proposed approach has also the feature of detecting anomalies in the hit/miss mech-
anism of data caches caused by cache tag corruptions: while turning a hit into a miss
mainly causes performance degradation, the reverse, even if less likely to occur, may
have serious e↵ects on results correctness [90]. To the best of our knowledge, this is
the first attempt to exploit carefully written programs (such as those proposed in
[91]) to support radiation experiments and extract specific information about the
embedded memories reliability.

The second research work presented in this PhD thesis moves on the direction
of understanding the reliability of embedded GPGPUs, giving novel insight on their
behaviors when exposed to ionizing radiation. The main contribution of this work is
the reliability analysis of a FFT algorithm designed for embedded GPGPUs through
neutron beam radiation experiments. The analysis is performed giving particular
attention to caches and thread scheduler corruption. As explained in the previous
paragraph, caches have been demonstrated to be a critical module in terms of re-
liability [8], since these memories have a very important role during the parallel
algorithms execution. Caches memories have a key role on GPGPUs architectures
as they significantly improve the performance allowing parallel tasks to share data.
Consequently, caches represent a critical component of GPGPUs computing, since
an error in a data induced by a radiation could a↵ect the computation of all the
cores, thus compromising the whole algorithm execution. Clearly, this behavior is
not acceptable if GPGPUs are employed for safety critical applications. This rep-
resents the motivation of the proposed work: the soft error sensitiveness data of a
typical parallel algorithm, executed with di↵erent GPGPUs cache configurations is
presented. Moreover, the related data about the same algorithm, but executed with
di↵erent threads distribution are shown. In order to be fully compliant with the
Degree of Parallelism (DOP) adopted by embedded GPGPUs, the progressive re-
duction of the FFT parallel tasks from iteration to iteration is considered, depicting
both overall GPGPU cross-section and the error rate for all the FFT stages. The
progressive reduction of the parallel tasks is a common behavior of several GPGPUs
algorithms (e.g., the Breadth-First Search - BFS algorithm, where the 30% of the
GPGPU execution time is managed by one thread), and it is called underutilized
parallelism in GPGPU computing [120]. Consequently, even if in this method the
analysis is performed only on the FFT algorithm, the results and discussion are
extendable to any other similar parallel algorithms for embedded GPGPUs. The
obtained results show that, if the L1 cache of the considered GPGPU is disabled,
the FFT algorithm execution has the lowest cross section. Instead, when the num-
ber of parallel threads managing the same algorithm is reduced, the execution is
less reliable. This e↵ect has been correlated to a di↵erent usage of the GPGPU
caches due to a di↵erent number of threads running in the GPGPU itself. Finally,
a greater number of errors when the algorithm exploits all the parallel resources
of the considered GPGPU, i.e., in the first stages of the FFT algorithm, has been
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experienced, in particular when the number of parallel tasks is higher.
Finally, the last research work in this area focus on the evaluation of two soft-

ware redundancy techniques aimed at soft-error detection in GPGPUs; these tech-
niques are completely algorithm independent; for the purpose of this work they have
been applied to a benchmark application, frequently used to evaluate the perfor-
mances of multi-core architectures (i.e., matrix multiplication algorithm), running
on a commercial-of-the-shelf GPGPU. In particular, two redundancy techniques
have been implemented, both based on Duplication-with-Comparison: (1) time re-
dundancy, in which the code running on the GPGPU is executed twice and the
obtained results are then compared, and (2) thread redundancy, in which a high
number of threads is used, where half of them are devoted to compute the results
and the other half is used to compute the replica; moreover, each of the two redun-
dancy techniques has been implemented in two di↵erent versions: in the first the
computation is based on a single instance of the input data, while in the second,
two instances of the input data exist.

The proposed methods have been implemented on a device by NVIDIA with
Fermi Architecture and validated in several extensive radiation campaigns at the
ISIS facility in the Rutherford Appleton Laboratories (RAL) in Didcot, UK, and
in the LANSCE facility at Los Alamos in USA. The gathered experimental results
demonstrate their e↵ectiveness, and provide interesting data about the sensitivity
to radiation of GPGPU devices.

4.1 NVIDIA GPGPUs Fermi-Based Architecture

The GPGPU architecture addressed in the research works described in this PhD
thesis is the NVIDIA Fermi Architecture [97]. As shown in Figure 4.1, the Fermi
GPGPU family is composed of an array of Streaming Multiprocessors (SMs), each of
which has the ability of execute several threads in parallel. The SMs are composed
of several computational units, called NVIDIA CUDA cores or Streaming Processors
(SPs), where each core manages a thread at a time. The Thread Blocks Scheduler
assigns the thread blocks to the SMs while the Thread Scheduler inside a SM assigns
a thread to a SP (as shown in Figure 4.2).

From the software point of view, NVIDIA CUDA extends C language by allowing
the programmer to define C-based functions, called kernels, that, when called, are
executed in parallel by N di↵erent CUDA threads; the NVIDIA CUDA program-
ming model assumes that the threads execute on a physical separate device (i.e.,
the GPGPU) that operates as a coprocessor of the host (i.e., the CPU) running
a controlling program. CUDA is particularly suitable for embedded GPGPUs as
the user can easily define directly on the code the portion of the application to be
executed on the host and the portion that requires GPGPU acceleration [97, 102].
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processes; on the contrary, embedded GPGPUs have to take 
care on the power consumption and must respect tight 
constraints on area and device resources. For this reason 
GPGPU devices should have limited area usage and, in order 
to save energy, optimized computational cores usage (e.g., a 
temporarily not used core is switched off in idle state).  

III. GPGPU INTERNAL STRUCTURE 
The GPGPU architecture we address in this paper is the 

NVIDIA Fermi Architecture [15]. The Fermi GPGPU family 
is composed of an array of Streaming Multiprocessors (SMs), 
as shown in Fig. 1, each of which has the ability of execute 
several threads in parallel. The SMs are composed of several 
computational units, called NVIDIA CUDA cores or Streaming 
Processors (SPs), where each core manages a thread at a time 
(0). The Thread Blocks Scheduler assigns the thread blocks to 
the SMs while the Thread Scheduler inside a SM assigns a 
thread to a SP (Fig. 1 - b). 

Each SM accesses to a global memory and both reading 
and writing operations are cached in the L2 cache. The 
maximum L2 cache size is 768KB. Each SP can access the 
global memory, but only the read operations are cached in L1; 
moreover, all the shared memory locations are accessible by 
all and only the CUDA cores embedded in the same SM and 
these accesses are not cached. The maximum L1 cache size 
can be 16KB or 48KB, depending on the user configuration 
[4]. 

From the software point of view, CUDA extends C 
language by allowing the programmer to define C-based 

functions, called kernels, that, when called, are executed in 
parallel by N different CUDA threads; the NVIDIA CUDA 
programming model assumes that the threads execute on a 
physical separate device (i.e., the GPGPU) that operates as a 
coprocessor of the host (i.e., the CPU) running a controlling 
program. CUDA is particularly suitable for embedded 
GPGPUs as the user can easily define directly on the code the 
portion of the application to be executed on the host and the 
portion that requires GPGPU acceleration [15]. 

IV. THE FFT ALGORITHM IMPLEMENTATION 
The main goal of our study is to evaluate how parallel 

algorithms behave when executed in embedded GPGPUs. 
Additionally, we investigate how the radiation-induced errors 
propagate in the parallel algorithm till reaching the output. 
Such a study is of great interest as it highlights the weaker 
parts of the code that should be hardened to increase the 
device reliability. Additionally, we analyze the effects of 
different threads and caches distributions on the GPGPUs 
output error rate. In this way it is possible to understand which 
GPGPU configuration ensures the highest level of reliability 
under several constraints. 

We chose as a benchmark the Cooley-Tukey algorithm 
[18], the most common FFT implementation for embedded 
applications. Cooley-Tukey algorithm allows to reduce the 

 

 
Fig. 3: The representation of the butterflies for each stage of the 
FFT algorithm, independently from the GPGPU configuration. 
The number of parallel tasks at each stage (highlighted with boxes 
in the figure) decreases exponentially from a stage to the 
following one. 
 

 
Fig. 4: The total GPGPU Kernel Time increases in the 
cases of 32 thread (FFT_32) and disabling the L1 cache 
(FFT_64_NOL1). 

2 point DFT

2 point DFT

2 point DFT

2 point DFT

Combine a 2 
points DFT

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

Combine a 2 
points DFT

Combine a 4 
points DFT

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

In
-o

rd
er

O
ut

pu
t d

at
a

N
ot

In
-o

rd
er

O
ut

pu
t d

at
a

tStage 1 Stage 2 Stage 3

4 parallel tasks 2 parallel tasks 1 tasks

0.433 
0.527 

0.452 

0.0
0.1
0.2
0.3
0.4
0.5
0.6

FFT_64 FFT_32 FFT_64_NOL1

G
PU

 K
er

ne
l T

im
e 

[s
] 

 
 

Fig. 1. The GPGPU Fermi Architecture is composed of several 
SMs. 

 
 

Fig. 2. A block of thread is forwarded to each SM by the 
ThreadBlock scheduler (a); each SP receives one thread at a time (b). 
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Figure 4.1. Fermi-based GPGPU Architecture: it is mainly composed of several SMs
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processes; on the contrary, embedded GPGPUs have to take 
care on the power consumption and must respect tight 
constraints on area and device resources. For this reason 
GPGPU devices should have limited area usage and, in order 
to save energy, optimized computational cores usage (e.g., a 
temporarily not used core is switched off in idle state).  

III. GPGPU INTERNAL STRUCTURE 
The GPGPU architecture we address in this paper is the 

NVIDIA Fermi Architecture [15]. The Fermi GPGPU family 
is composed of an array of Streaming Multiprocessors (SMs), 
as shown in Fig. 1, each of which has the ability of execute 
several threads in parallel. The SMs are composed of several 
computational units, called NVIDIA CUDA cores or Streaming 
Processors (SPs), where each core manages a thread at a time 
(0). The Thread Blocks Scheduler assigns the thread blocks to 
the SMs while the Thread Scheduler inside a SM assigns a 
thread to a SP (Fig. 1 - b). 

Each SM accesses to a global memory and both reading 
and writing operations are cached in the L2 cache. The 
maximum L2 cache size is 768KB. Each SP can access the 
global memory, but only the read operations are cached in L1; 
moreover, all the shared memory locations are accessible by 
all and only the CUDA cores embedded in the same SM and 
these accesses are not cached. The maximum L1 cache size 
can be 16KB or 48KB, depending on the user configuration 
[4]. 

From the software point of view, CUDA extends C 
language by allowing the programmer to define C-based 

functions, called kernels, that, when called, are executed in 
parallel by N different CUDA threads; the NVIDIA CUDA 
programming model assumes that the threads execute on a 
physical separate device (i.e., the GPGPU) that operates as a 
coprocessor of the host (i.e., the CPU) running a controlling 
program. CUDA is particularly suitable for embedded 
GPGPUs as the user can easily define directly on the code the 
portion of the application to be executed on the host and the 
portion that requires GPGPU acceleration [15]. 

IV. THE FFT ALGORITHM IMPLEMENTATION 
The main goal of our study is to evaluate how parallel 

algorithms behave when executed in embedded GPGPUs. 
Additionally, we investigate how the radiation-induced errors 
propagate in the parallel algorithm till reaching the output. 
Such a study is of great interest as it highlights the weaker 
parts of the code that should be hardened to increase the 
device reliability. Additionally, we analyze the effects of 
different threads and caches distributions on the GPGPUs 
output error rate. In this way it is possible to understand which 
GPGPU configuration ensures the highest level of reliability 
under several constraints. 

We chose as a benchmark the Cooley-Tukey algorithm 
[18], the most common FFT implementation for embedded 
applications. Cooley-Tukey algorithm allows to reduce the 

 

 
Fig. 3: The representation of the butterflies for each stage of the 
FFT algorithm, independently from the GPGPU configuration. 
The number of parallel tasks at each stage (highlighted with boxes 
in the figure) decreases exponentially from a stage to the 
following one. 
 

 
Fig. 4: The total GPGPU Kernel Time increases in the 
cases of 32 thread (FFT_32) and disabling the L1 cache 
(FFT_64_NOL1). 
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Fig. 1. The GPGPU Fermi Architecture is composed of several 
SMs. 

 
 

Fig. 2. A block of thread is forwarded to each SM by the 
ThreadBlock scheduler (a); each SP receives one thread at a time (b). 
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Figure 4.2. A block of thread is forwarded to each SM by the ThreadBlock
scheduler (a); each SP receives one thread at a time (b).

4.1.1 Memory hierarchy

The cache memories have a key role in fully exploiting the high computation capa-
bilities of the GPGPU [87]. In general, cache memories speed up the microprocessor
memory access by storing recently used data values. Cache internal organization is
based on two memory arrays (data array and directory array) managed by a cache
controller circuitry, in which the minimum allocation unit of the data array, called
cache line, stores a set of memory words. Finally, a shared memory exists for each
streaming multi- processor, storing the data in common to the threads running on
it.

As shown in Figure 4.1 the main modules composing the GPGPU are the SMs
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and the DRAM memory in which the global memory of the device is mapped.
Each SM can access each global memory location and both the reading and the
writing operations are cached in the L2 cache. The maxmum L2 cache size is 768
KB. Moreover, in the SM, the L1 cache and the shared memory are embedded
in the same physical memory device and allocated in the same block; the typical
dimension of this memory for a Fermi-based GPU block is 64 KB, with two possible
configurations defined by the final user: (1) 16 KB of shared memory and 48 KB of
L1 cache, and (2) 48 KB of shared memory and 16 KB of L1 cache.

In the SM, each CUDA core can access each global memory location, but only
the read operations are cached in the L1 cache; moreover, all the shared memory
locations are accessible by all the CUDA cores embedded in the same SM and these
accesses are not cached. Finally, the shared memory is expected to be much faster
than the global. The global memory accesses are cached and they can be configured
at compile time to be cached in both L1 and L2 or in L2 only. A cache line is
composed of 128 Bytes and maps to a 128 Bytes wide aligned segment in the device
memory. Memory accesses that are cached in both L1 and L2 are serviced with 128-
Byte memory transactions, whereas memory accesses that are cached in L2 only
are serviced with 32-Byte memory transactions. Both L1 and L2 caches are set
associative and implement a LRU strategy. Moreover, the default store instruction
cache operations are write-back, both for the L1 and L2 cache [99]. This is taken
into account in the development of the algorithms proposed in this PhD thesis.

Please note that the works proposed in this PhD thesis address a Fermi Archi-
tecture GPGPU oriented to embedded systems, in which the ECC scheme is not
applied to the memory modules. The ECC scheme proposed by NVIDIA for HPC
devices, even if e↵ective in reducing the impact of ionizing radiation on the GPGPU
memory structures, has several limitations, as its activation reduces the GPGPU
performance of up to 30% and memory availability of up to 15% [100]. Conse-
quently, it is essential to carefully evaluate the cache sensitivity to understand when
the ECC can be conveniently adopted: for example, in case the user needs extreme
performance and for this reason ECC is disabled, a careful evaluation of the con-
sequences on the reliability of the GPGPU memories should be conducted.

4.2 GPGPU reliability background

Radiation e↵ects are a concern for the reliability of electronic devices not only in
harsh radiation environments such as space or avionic, but also at ground level [8].
Today, device technology shrinking has led to a drastic reduction of critical charges
in logic gates and memory cells that results in a higher sensitivity to soft-errors
induced by ionizing radiation.
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In the last years, an increasing research interest has been devoted to the soft-
error sensitiveness evaluation of GPGPUs [17] . A first method for the evaluation
of their radiation sensitivity has been proposed in [92], where authors present an
analytical model for the evaluation of Single Event Upset (SEU) occurrences on
GPGPUs depending on the memory and register usage of the running application.

Recently, GPGPUs have been evaluated using spallation neutron sources that
provide the user with an atmospheric-like spectrum. A preliminary experimental
setup for the execution of neutron radiation test of a GPGPU has been proposed in
[93]. The authors describe a low-cost but e↵ective setup providing some guidelines
on how to test GPGPUs, focusing on the constraints imposed by the radiation source
and the device connections with the host computer controlling the experiment. The
first radiation test results demonstrate that both memory and logic resources of a
GPGPU may be corrupted by atmospheric neutrons. Being characterized by high-
performance computational units such as fixed and floating point units, a further
evaluation of the probabilities that radiation-induced errors may a↵ect the mantissa,
the exponents or the sign has been evaluated in [96]. A strong variation on the
output error rate has been observed when di↵erent types of data are elaborated
showing a higher sensitivity for the resources used by the mantissa. Moreover,
radiation evaluations also addressed the distribution of the computational workload
on GPGPUs such as the thread distribution and their relation to multiple output
errors [95, 121].

Aside from testing approaches, software-based hardening solutions have also ten-
tatively addressed in [95], where authors developed an optimized software-based
hardening strategy exclusively oriented to matrix multiplication applications. Re-
searches have also investigated the possibility of using Software-Based Self-Test
(SBST) programs in order to detect and localize permanent faults in GPGPUs:
a preliminary work proposing a possible SBST solution has been presented in [?].

Recent previous works have also been done to evaluate the reliability of HPC-
oriented GPGPUs [118, 96]. Embedded low-power GPGPUs have a similar architec-
ture than HPC devices, but have a di↵erent programming paradigm. If on one side,
HPC applications have performances as a major concern, so the GPGPU is likely to
be always fully loaded with parallel processes; on the contrary, embedded GPGPUs
have to take care on the power consumption and must respect tight constraints on
area and device resources. For this reason GPGPU devices should have limited area
usage and, in order to save energy, optimized computational cores usage (e.g., a
temporarily not used core is switched o↵ in idle state).

In the HPC fields, supercomputers (like TITAN at the Oak Ridge National
Laboratory [127], or Moonlight at the Los Alamos National Laboratory [128]) are
composed of thousands of Graphics Processing Units that work in parallel. Titan,
world’s second fastest supercomputer for open science in 2014, consists of more
than 18,000 GPUs that scientists from various domains such as astrophysics, fusion,
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climate, and combustion use routinely to run large-scale simulations. Scientific
applications that run on these large-scale machines are typically very long-running.
A single simulation may take from a few hours to a couple of days. Due to the
large-scale and the long duration, leadership scientific applications may encounter
interruptions due to system failures as well as Silent Data Corruption (SDC) in
the output. Therefore, while the performance improvement achieved via inherent
parallelism available in GPUs is necessary to expedite the scientific discovery process,
it is equally critical that applications are able to cope with system failures during a
run, without losing all of the work.

As documented in the works cited before, the newest GPU cores are sensitive
to radiation-induced errors, including those from the terrestrial neutron radiation
environment. Field data obtained from more than 18 months of controlled opera-
tion of both TITAN and Moonlight will be correlated with beam experiments data.
Moreover, novel code optimizations to reduce the time-to-solution of specific paral-
lel algorithms are continuously implemented. Unfortunately, while the performance
and e�ciency of code optimizations is well established, their impact on energy con-
sumption and resilience characteristics has not been fully evaluated. In this contact,
a current research topic is based on studies to provide a thorough understanding of
the e↵ects of code optimizations on GPU’s performance, energy consumption, and
reliability will be presented.

4.3 Case Study: Seco CARMAKIT board for em-
bedded GPGPUs development

In order to evaluate the reliability techniques addressed in this PhD thesis, three
di↵erent radiation experiments have been performed. The evaluation board used for
the execution of these radiation test campaigns is the CARMA-Kit - SECOCQ7-
MxM [101, 102], whose simplified architecture is shown in Figure 4.3.

The CARMA DevKit features a Qseven NVIDIA Tegra 3 Quad-core ARM A9
CPU and the NVIDIA Quadro 1000 M GPU with 96 CUDA cores. The ARM A9
CPU and the GPGPU are connected through a PCI express bus. In the NVIDIA
QUADRO 1000 M there are 128 KB of L2 cache. The device includes two SMs, each
of which contains 48 CUDA cores; for each SM, the size of the memory module in
which the shared memory and the L1 cache are mapped is 64 KB; the configuration
in which 16 KB are dedicated to the L1 cache and 48 KB are for the shared memory
has been chosen.

In Figure 4.4 a picture of the SECO board used during the radiation test cam-
paigns is shown.
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all the L1 caches and of all the shared memories embedded in the
GPGPU under test, it is required to activate a thread (executing the
algorithms proposed in Section 4.1) in each SM composing the
GPGPU. These threads will be executed in parallel by the GPGPU
and each of them will use a different input data vector to load into
the addressed memory the user defined pattern.

On the other side, considering the test of the L2 cache, since this
memory is a unique memory shared by all the SMs composing the
addressed GPGPU, it is necessary that only one thread activated in
one SM executes the algorithm proposed in Section 4.2.

5. Experimental results

In this section the evaluation board we used for the experiment
campaign and the neutron testing setup are described; then we
report the gathered results and provide an interpretation of them.

5.1. Case study: NVIDIA QUADRO 1000 M

The evaluation board we used for the radiation test campaigns
is the CARMA-Kit – SECOCQ7-MxM [18], whose simplified
architecture is shown in Fig. 6.

The CARMA DevKit features a Qseven NVIDIA Tegra! 3
Quad-core ARM A9 CPU and the NVIDIA Quadro! 1000 M GPU with
96 CUDA cores [19]. The ARM A9 CPU and the GPGPU are connected
through a PCI express bus. In the NVIDIA QUADRO 1000 M there are
128 KB of L2 cache. The device includes two SMs, each of which
contains 48 CUDA cores; for each SM, the size of the memory mod-
ule in which the shared memory and the L1 cache are mapped is
64 KB; we choose the configuration in which 16 KB are dedicated
to the L1 cache and 48 KB are for the shared memory.

5.2. Neutron test setup

Radiation experiments were performed at the VESUVIO neutron
facility at ISIS, Rutherford Appleton Laboratories (RAL), Didcot, UK.
We irradiated the device with the available spectrum that has been
already demonstrated to be suitable for emulating the atmospheric
neutron flux [20]. The available flux for energies above 10 MeV was
of about 3.4 ! 105 n/(cm2 s) at 137 cm from the beam source, where
the CARMA DevKit was placed. Since for the same energy spectrum
the neutron flux at sea level has been measured to be of about
13 n/(cm2 h) [23], ISIS provides an acceleration factor of about 108.

Irradiation was performed at room temperature with normal
angle of incidence and the beam was focused on a spot with a
diameter of 2 cm plus 1 cm of penumbra. The side of the spot is
sufficient to uniformly irradiate the GPGPU chip, leaving the ARM
processor, the control circuitry, and critical peripherals out of the
beam. This is essential for preventing neutron-induced errors on
power switches, which may compromise the experiment, and on
the PCI express protocol that manages the data communications
between the CPU and the GPGPU.

The ARM processor, running a Linux Ubuntu embedded opera-
tive system, has been linked through an Ethernet cable to an exter-
nal controlling computer located in the control room. Moreover,
leaving the ARM core out of the beam allowed to safely supervising

the experiments from the control room without any error occur-
rences on the experimental data transmission.

Neutrons are known to generate also permanent failures in
electronic devices (e.g., latch-ups) that may cause severe effects
on the device functionalities. A latch-up is a radiation-induced
short circuit that, if not promptly detected, may destroy the device.
During our test experience we periodically checked the devices
under test functionalities while the beam was turned off, and never
observed any misbehavior. We can then conclude that the tested
GPGPUs are not prone to experience single event latch-ups.

5.3. Radiation testing analysis and results

The analysis we performed is based on three experimental cam-
paigns, one related to each memory block (L1 cache, L2 cache and
shared memory). Each experimental campaign consists of the
execution of the related monitoring programs (i.e., the algorithms
presented in Section 4) in the considered GPGPU. Each monitoring
program is supported by the Linux Embedded Operating System
(Ubuntu 10.04), running on the ARM processor: it provides a
continuous transmission of the experimental data to the external
controlling computer; please note that the transmission is per-
formed by the ARM core without any intrusiveness to the GPGPU
computation: the Operating System first collects and then analyzes
the data provided by the GPGPU execution of the monitoring pro-
gram, without interfering with its computation. In details, during
the execution of each program on the GPGPU the Operating System
running in the ARM processor sends to the controlling computer
the iteration ID, thread ID, Streaming Multiprocessor ID, and the
number of errors possibly identified by the monitoring program.

Furthermore, when L1 and L2 caches are considered, also the
cache miss and hit times, measured by the monitoring program
during each cache access, are forwarded to the external controlling
computer. This allows identifying any error happening in the cache
tags or control logic, by checking whether the cache hit times are
homogeneous and coherent with the expected values: if a fault
occurs in a cache tag, the data stored in the corresponding cache
line cannot be loaded by the processor and, consequently, a cache
miss is generated, while the expected behavior is a cache hit. The
opposite behavior (a cache hit instead of a cache miss) is extremely
unlikely.

When performing L1 cache or shared memory radiation exper-
iment, we activated a single thread, executing the corresponding
algorithm on each SM; if the test of the L2 cache is executed, one
thread in one SM executes the algorithm. The exposure time for
the three algorithms (referred in Figs. 3–5 as step Wait for exposi-
tion to neutrons;) has been set equal to about 10s, in order to make
negligible (1) the time required to load the memories with the spe-
cific values, and (2) the time required to check the content of the
memories after the neutron exposition.

At the end of the radiation test campaign we counted the whole
number of errors observed per GPGPU memory module. In order to
properly compare the sensitivity of each memory module, we com-
puted the GPGPU cross-section by dividing the number of observed
errors per time unit in each module by the number of exposed bits
and the average neutrons flux (number of particles hitting the
device per unit area and unit time). The results we obtained are
reported in Table 1: the cross-section data is computed considering
all the error events experienced during the whole testing time.
Considering the estimation of the uncertainty, the 95% confidence
interval of the cross section data reported in Table 1 is estimated to
be equal to the 10% of the value in the worst case due to a statis-
tical error. Moreover, we performed the experiments applying
homogeneous pattern (e.g., all 0s and all 1s) since these patterns
allow a right characterization of the memory cell transitions 0 to
1 and 1 to 0 [21].Fig. 6. A simplified architecture of the evaluation board.
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Figure 4.3. A simplified representation of the SECO evaluation board.

Figure 4.4. A picture of the SECO board used for the radiation test campaigns.

4.4 GPGPU Caches reliability evaluation: the pro-
posed approach

The purpose of this research work is the investigation of the sensitivity to soft-
errors induced by terrestrial radiation e↵ects on GPGPUs caches, thus evaluating
their capability to produce correct results even when used for long and massive
computations in HPC data centers, and to work in harsh environments and/or for
safety-critical applications.

4.4.1 Developed method

In this section, the algorithms designed and implemented to e�ciently support the
reliability evaluation of the caches memories of a typical GPGPU are presented. The
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goal of the proposed algorithms for the Shared Memory, L1 and L2 caches is twofold.
First, before radiating the device the load into each word of the target memory of a
given value (typically all 0’s or all 1’s) is required; this operation causes a sequence
of cache miss, if the L1 or L2 cache are addressed. Secondly, after radiation a read
back operation of the data from the memory is required, checking their correctness
(i.e., whether any bit changed its value due to a possible radiation e↵ect); clearly, in
the ideal case, this operation causes a sequence of cache hits, if the L1 or L2 cache
are addressed, since the data are already present in these two memories.

Considering the L1 and L2 cache, the proposed algorithms are also able to mea-
sure the time required to access each addressed data, thus they allow to understand if
a reading operation causes a cache hit (if the data is already present in the memory)
or a cache miss (if the data needs to be loaded from the main memory). The way in
which these temporal data are acquired is explained in the following sections. These
data allow to understand if a radiation particle can force a cache hit to become a
cache miss, e.g., by corrupting a bit in the cache tag. This behavior can be detected
by checking the time required to read a data after the exposure to radiation: since
the data is already present in the considered cache, the expected access time should
correspond to a cache hit time. Instead, if the calculated time corresponds to a
cache miss time, it means that a soft error a↵ected the corresponding cache tag,
invalidating the corresponding data.

Algorithm for L1 cache and shared memory

As already explained in the previous sections, each SM includes a memory block
containing both the L1 cache and the shared memory; as the goal of the proposed
method is to write a specific data pattern into these memories and to read their
content, it is su�cient that one thread in each SM executes the kernel functions
corresponding to the proposed algorithm.

The algorithm basically allocates a properly initialized vector whose size is equal
to that of the target memory, and performs an access to the vector, which moves
it to the target memory itself. After irradiation, the vector elements are read back
to check whether they still are in memory, and whether they still hold the expected
values. Moreover, when working on a cache the algorithm also checks whether any
access produces the expected behavior (i.e., hit or miss).

In Figure 4.5 the algorithm proposed for the L1 cache is shown in details; the
algorithm is parametric, since the user can choose the value that is written into each
memory bit; this value can be all 0’s, if the goal is the detection of SEUs turning
a 0 into a 1, or all 1’s, if the goal is the detection of SEUs turning a 1 into a 0;
this value is specified by the input parameter T. The algorithm is expected to be
repeated twice with opposite values of T and is independent on the original content
of the cache. The steps from 6 to 10 are the most important in the algorithm; V is
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a vector defined into the global memory of the device (through the CUDA keyword
global ) whose size is equal to the size of the L1 cache; each element of V is of type

CACHE LINE, i.e., a data structure defined for this purpose, whose size is equal to
128 Bytes (the cache line size). In step 6 the vector V is initialized with the value
T; in this step the L1 cache is not involved since writing operations are not cached.
In step 7, instead, the vector V is read and each element is saved into registers
(registers since they are not cached and consequently they cannot interact with the
L1 cache); since V is located in the global memory and since the size of V is equal to
the size of the L1 cache (which uses the LRU substitution policy), at the end of the
step 6 the L1 cache is fully loaded with V (i.e., it is full of 0’s or 1’s). Step 7 causes
cache misses, only. The number of clock cycles needed to manage each access to V
in this phase can be computed with the steps 7.1, 7.3 and 7.4, in which the clock
count before and after each reading operation is saved into an element of a proper
vector L1 t miss, stored in the shared memory since the shared memory accesses are
not cached. During step 8 the device is exposed to radiation. The duration of this
step is tuned by the user, and it should be carefully engineered when performing
a radiation test. The exposure time, in fact, depends on both the particles flux
provided by the facility and on the sensitivity of caches, which may not be known
a priori. Step 8 should be long enough to consider negligible the time required to
perform steps 5, 6, and 9 but short enough to consider negligible the probability
of having more than one particle to corrupt the memory in a single test. This
latter consideration is essential to measure the occurrences of Multiple Bit Upsets
(MBUs). Moreover, by matching this condition, the probability of a soft-error in the
addressed cache location is maximized with respect to the probability of a soft-error
in the combinational logic. In the step 10 the vector V is read again, in order to
check if during the step 8 any SEU arose in the L1 cache; the performed operations
are the same of the step 7, plus a bitwise check (Bitwise Check) to compute the
number of bits corrupted by radiation. These read operations cause a sequence of
cache hits, since all the elements of vector V are in the L1 cache already; the number
of clock cycles needed to manage a L1 cache hit is computed by the steps 10.1, 10.3
and 10.4, and saved in a proper vector L1 t hit stored in the shared memory.

By reading the content of L1 t hit and L1 t miss at the end of the experiment,
checking whether they contain any value significantly di↵erent from the others, it is
possible to detect any fault that caused a miss to be turned into a hit, or vice versa.
Hence, this mechanism allows the detection of cache tag malfunctions that lead to
unexpected miss or hit behavior: in the former situation, data will be loaded in the
cache even if not necessary, impacting the code performance, while, in the latter,
wrong or obsolete data will be considered as corrected, impacting seriously the code
reliability.

Figure 4.6 shows the algorithm proposed to manage the radiation experiment
targeting the shared memory embedded in each SM. The algorithm is similar to
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the one proposed for the L1 cache. The data structure used for this algorithm is a
vector V defined into the shared memory of the addressed SM (through the CUDA
key-word shared ) whose size is equal to the size of the shared memory; each
element of V is composed of a type S MEM LINE, i.e., a data structure defined for
this purpose, whose size is equal to 128 Bytes. This algorithm is composed of two
major steps; in the step 5, the shared memory is initialized with the value T (all
0’s or all 1’s) chosen by the user; in the step 8 all the shared memory locations are
read, and the values are controlled with a bitwise check: in this way it is possible to
understand if during the step 6 a radiation damaged one or more bit values of the
shared memory.

if during the step 8 any SEU arose in the L1 cache; the 
performed operations are the same of the step 7, plus a bitwise 
check (BitwiseCheck) to compute the number of bits corrupted 
by radiation. These read operations cause a sequence of cache 
hits, since all the elements of vector V are in the L1 cache 
already; the number of clock cycles needed to manage a L1 
cache hit is computed by the steps 10.1, 10.3 and 10.4, and 
saved in a proper vector L1_t_hit[] stored in the shared 
memory.  

By reading the content of L1_t_hit and L1_t_miss at the 
end of the experiment, checking whether they contain any 
value significantly different from the others, we can detect any 
fault that caused a miss to be turned into a hit, or vice versa. 
Hence, this mechanism allows the detection of cache tag 
malfunctions that lead to unexpected miss or hit behavior: in 
the former situation, data will be loaded in the cache even if 
not necessary, impacting the code performances, while, in the 
latter, wrong or obsolete data will be considered as corrected, 
impacting seriously the code reliability. It is worth noting that 
tags malfunctions are not detected by any ECC mechanism. 
The usage of these timing data will be further discussed in 
Section V. 
 
T = all 0’s | all 1’s; 
Radiation_test_L1 (T){ 
1. L1_size = size of the L1 cache; 
2. Define type CACHE_LINE; /*128 byte*/ 
3. V_size= L1_size / sizeof (CACHE_LINE); 
4. Define a vector V of type CACHE_LINE with 

dimension V_size into the Global Memory; 
5. Define Integer vectors L1_t_hit and L1_t_miss 

with dimension V_size into the Shared Memory; 
6. For each element v[I] of the vector V  

6.1. Write T into V[I];   
7. For each element v[I] of the vector V  

7.1. t1 = clock(); 
7.2. Read the value of V[I] and save it into a 

register R; 
7.3. t2 = clock(); 
7.4. L1_t_miss[I] = t2 – t1; 

8. Wait for exposition to neutrons; 
9. err = 0; 
10. For each element v[I] of the vector V { 

10.1. t1 = clock(); 
10.2. Read the value of V[I] and save it into a 

register R; 
10.3. t2 = clock(); 
10.4. L1_t_hit [I] = t2 – t1; 
10.5. err += BitwiseCheck(R , T);  } 

11. print (err); } 
 

Fig. 3. The pseudo-code of the algorithm for the L1 cache. 
  

In Figure 4, the algorithm proposed to manage the 
radiation experiment targeting the shared memory embedded 
in each SM is shown. The algorithm is similar to the one 
proposed for the L1 cache. The data structure used for this 
algorithm is a vector V defined into the shared memory of the 
addressed SM (through the CUDA keyword __shared__) 
whose size is equal to the size of the shared memory; each 
element of V is composed of a type S_MEM_LINE, i.e., a data 
structure we defined for this purpose, whose size is equal to 
128 bytes. This algorithm is composed of two major steps; in 
the step 5, the shared memory is initialized with the value T 

(all 0’s or all 1’s) chosen by the user; in the step 8 all the 
shared memory locations are read, and the values are 
controlled with a bitwise check: in this way it is possible to 
understand if during the step 6 a radiation damaged one or 
more bit values of the shared memory. 

 
T = all 0’s | all 1’s; 
Radiation_test_Shared Memory (T){ 
1. S_MEM_size = size of the shared memory; 
2. Define type S_MEM_LINE;  /*128 byte*/ 
3. V_size= S_MEM_size / sizeof (S_MEM_LINE); 
4. Define a vector V of type S_MEM_LINE with 

dimension V_size into the Shared Memory; 
5. For each element v[I] of the vector V  

5.1. Write T into V[I]; 
6. Wait for exposition to neutrons; 
7. err = 0; 
8. For each element v[I] of the vector V{ 

8.1. Read the value of V[I] and save it into a 
register R; 

8.2. err += BitwiseCheck(R , T);  } 
9. print (err); } 

 

Fig. 4. The pseudo-code of the test for the shared memory.  
B. Algorithm for L2 cache  

Figure 5 shows the algorithm we propose to manage the 
radiation experiments for the L2 cache. Once more, the 
proposed algorithm can be executed by a single thread 
instantiated in a single SM. In order to avoid that the 
functionalities of the L2 cache are influenced by the L1 cache 
(especially when the number of clock cycles needed to 
manage a cache hit or a cache miss are measured), the L1 
cache must be disabled during this test; to do this, the CUDA 
parameters –Xptxas –dlcm=cg have to be used at compile 
time. 

 
T = all 0’s | all 1’s; 
Radiation_test_L2 (T){ 
1. L2_size = size of the L2 cache; 
2. Define type CACHE_LINE; /*128 byte*/ 
3. V_size= L2_size / sizeof (CACHE_LINE); 
4. Define a vector V of type CACHE_LINE with 

dimension V_size into the Global Memory; 
5. Define Integer vectors L2_t_hit and L2_t_miss 

with dimension V_size into the Shared Memory; 
6. For each element v[I] of the vector V  

6.1. Write T into V[I]; 
7. Clear the L2 Cache; 
8. For each element v[I] of the vector V  

8.1. t1 = clock(); 
8.2. Read the value of V[I] and save it into a 

register R; 
8.3. t2 = clock(); 
8.4. L2_t_miss [I] = t2 – t1; 

9. Wait for exposition to neutrons; 
10. err = 0; 
11. For each element v[I] of the vector V { 

11.1. t1 = clock(); 
11.2. Read the value of V[I] and save it into a 

register R; 
11.3. t2 = clock(); 
11.4. L2_t_hit [I] = t2 – t1; 
11.5. err += BitwiseCheck(R , T);  } 

12. print (err); } 
 

Fig. 5. The pseudo-code of the test for the L2 cache.  
 

The algorithm we designed for the radiation test of the L2 

Figure 4.5. The pseudo-code of the algorithm for the test of the L1 cache.
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if during the step 8 any SEU arose in the L1 cache; the 
performed operations are the same of the step 7, plus a bitwise 
check (BitwiseCheck) to compute the number of bits corrupted 
by radiation. These read operations cause a sequence of cache 
hits, since all the elements of vector V are in the L1 cache 
already; the number of clock cycles needed to manage a L1 
cache hit is computed by the steps 10.1, 10.3 and 10.4, and 
saved in a proper vector L1_t_hit[] stored in the shared 
memory.  

By reading the content of L1_t_hit and L1_t_miss at the 
end of the experiment, checking whether they contain any 
value significantly different from the others, we can detect any 
fault that caused a miss to be turned into a hit, or vice versa. 
Hence, this mechanism allows the detection of cache tag 
malfunctions that lead to unexpected miss or hit behavior: in 
the former situation, data will be loaded in the cache even if 
not necessary, impacting the code performances, while, in the 
latter, wrong or obsolete data will be considered as corrected, 
impacting seriously the code reliability. It is worth noting that 
tags malfunctions are not detected by any ECC mechanism. 
The usage of these timing data will be further discussed in 
Section V. 
 
T = all 0’s | all 1’s; 
Radiation_test_L1 (T){ 
1. L1_size = size of the L1 cache; 
2. Define type CACHE_LINE; /*128 byte*/ 
3. V_size= L1_size / sizeof (CACHE_LINE); 
4. Define a vector V of type CACHE_LINE with 

dimension V_size into the Global Memory; 
5. Define Integer vectors L1_t_hit and L1_t_miss 

with dimension V_size into the Shared Memory; 
6. For each element v[I] of the vector V  

6.1. Write T into V[I];   
7. For each element v[I] of the vector V  

7.1. t1 = clock(); 
7.2. Read the value of V[I] and save it into a 

register R; 
7.3. t2 = clock(); 
7.4. L1_t_miss[I] = t2 – t1; 

8. Wait for exposition to neutrons; 
9. err = 0; 
10. For each element v[I] of the vector V { 

10.1. t1 = clock(); 
10.2. Read the value of V[I] and save it into a 

register R; 
10.3. t2 = clock(); 
10.4. L1_t_hit [I] = t2 – t1; 
10.5. err += BitwiseCheck(R , T);  } 

11. print (err); } 
 

Fig. 3. The pseudo-code of the algorithm for the L1 cache. 
  

In Figure 4, the algorithm proposed to manage the 
radiation experiment targeting the shared memory embedded 
in each SM is shown. The algorithm is similar to the one 
proposed for the L1 cache. The data structure used for this 
algorithm is a vector V defined into the shared memory of the 
addressed SM (through the CUDA keyword __shared__) 
whose size is equal to the size of the shared memory; each 
element of V is composed of a type S_MEM_LINE, i.e., a data 
structure we defined for this purpose, whose size is equal to 
128 bytes. This algorithm is composed of two major steps; in 
the step 5, the shared memory is initialized with the value T 

(all 0’s or all 1’s) chosen by the user; in the step 8 all the 
shared memory locations are read, and the values are 
controlled with a bitwise check: in this way it is possible to 
understand if during the step 6 a radiation damaged one or 
more bit values of the shared memory. 

 
T = all 0’s | all 1’s; 
Radiation_test_Shared Memory (T){ 
1. S_MEM_size = size of the shared memory; 
2. Define type S_MEM_LINE;  /*128 byte*/ 
3. V_size= S_MEM_size / sizeof (S_MEM_LINE); 
4. Define a vector V of type S_MEM_LINE with 

dimension V_size into the Shared Memory; 
5. For each element v[I] of the vector V  

5.1. Write T into V[I]; 
6. Wait for exposition to neutrons; 
7. err = 0; 
8. For each element v[I] of the vector V{ 

8.1. Read the value of V[I] and save it into a 
register R; 

8.2. err += BitwiseCheck(R , T);  } 
9. print (err); } 

 

Fig. 4. The pseudo-code of the test for the shared memory.  
B. Algorithm for L2 cache  

Figure 5 shows the algorithm we propose to manage the 
radiation experiments for the L2 cache. Once more, the 
proposed algorithm can be executed by a single thread 
instantiated in a single SM. In order to avoid that the 
functionalities of the L2 cache are influenced by the L1 cache 
(especially when the number of clock cycles needed to 
manage a cache hit or a cache miss are measured), the L1 
cache must be disabled during this test; to do this, the CUDA 
parameters –Xptxas –dlcm=cg have to be used at compile 
time. 

 
T = all 0’s | all 1’s; 
Radiation_test_L2 (T){ 
1. L2_size = size of the L2 cache; 
2. Define type CACHE_LINE; /*128 byte*/ 
3. V_size= L2_size / sizeof (CACHE_LINE); 
4. Define a vector V of type CACHE_LINE with 

dimension V_size into the Global Memory; 
5. Define Integer vectors L2_t_hit and L2_t_miss 

with dimension V_size into the Shared Memory; 
6. For each element v[I] of the vector V  

6.1. Write T into V[I]; 
7. Clear the L2 Cache; 
8. For each element v[I] of the vector V  

8.1. t1 = clock(); 
8.2. Read the value of V[I] and save it into a 

register R; 
8.3. t2 = clock(); 
8.4. L2_t_miss [I] = t2 – t1; 

9. Wait for exposition to neutrons; 
10. err = 0; 
11. For each element v[I] of the vector V { 

11.1. t1 = clock(); 
11.2. Read the value of V[I] and save it into a 

register R; 
11.3. t2 = clock(); 
11.4. L2_t_hit [I] = t2 – t1; 
11.5. err += BitwiseCheck(R , T);  } 

12. print (err); } 
 

Fig. 5. The pseudo-code of the test for the L2 cache.  
 

The algorithm we designed for the radiation test of the L2 

Figure 4.6. The pseudo-code of the algorithm for the test of Shared memory.

Algorithm for L2 cache

Figure 4.7 shows the proposed algorithm, finalized to manage the radiation experi-
ments for the L2 cache. As said for the L1 and Shared memory test, the algorithm
can be executed by a single thread instantiated in a single SM. The L1 cache must
be disabled during this test in order to prevent the functionalities of L2 cache to be
influenced by the L1 cache (especially when the number of clock cycles needed to
manage a cache hit or a cache miss are measured). L1 cache can be easily disabled
adding the CUDA parameters -Xptxas-dlcm = cg at compile time.

The algorithm designed for the radiation test of the L2 cache is pretty similar
to the algorithm addressing the L1; the only di↵erence is the step 7, in which a
cleaning operation of the L2 cache is introduced: since both the reading and the
writing operations involving the global memory are cached in the L2, the content
of the L2 cache has to be cleared after the step 6, before reading for the first time
the content of the vector V defined into the global memory. In this way, with the
first read operation (step 8 of the algorithm) it is possible to compute the number
of clock cycles needed to manage a L2 cache miss (steps 8.1, 8.3, and 8.4); these
values are saved into a proper vector L2 t miss stored in the shared memory. In the
step 11, the vector V is read again, in order to check if during the step 9 radiations
corrupted the values stored in the L2 cache; the performed operations are the same
of the step 8, plus a bitwise check for computing the number of bit values corrupted
by radiation. These read operations cause cache hits, since all the data of vector
V are in the L2 cache; the number of clock cycles needed to manage a L2 cache
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hit are computed by the steps 11.1, 11.3 and 11.4, and are saved into a proper
vector L2 t hit stored in the shared memory. Also in this case the gathered timing
information allows the detection of cache tags malfunctions, and the usage of these
data will be further discussed in Section 4.1.

if during the step 8 any SEU arose in the L1 cache; the 
performed operations are the same of the step 7, plus a bitwise 
check (BitwiseCheck) to compute the number of bits corrupted 
by radiation. These read operations cause a sequence of cache 
hits, since all the elements of vector V are in the L1 cache 
already; the number of clock cycles needed to manage a L1 
cache hit is computed by the steps 10.1, 10.3 and 10.4, and 
saved in a proper vector L1_t_hit[] stored in the shared 
memory.  

By reading the content of L1_t_hit and L1_t_miss at the 
end of the experiment, checking whether they contain any 
value significantly different from the others, we can detect any 
fault that caused a miss to be turned into a hit, or vice versa. 
Hence, this mechanism allows the detection of cache tag 
malfunctions that lead to unexpected miss or hit behavior: in 
the former situation, data will be loaded in the cache even if 
not necessary, impacting the code performances, while, in the 
latter, wrong or obsolete data will be considered as corrected, 
impacting seriously the code reliability. It is worth noting that 
tags malfunctions are not detected by any ECC mechanism. 
The usage of these timing data will be further discussed in 
Section V. 
 
T = all 0’s | all 1’s; 
Radiation_test_L1 (T){ 
1. L1_size = size of the L1 cache; 
2. Define type CACHE_LINE; /*128 byte*/ 
3. V_size= L1_size / sizeof (CACHE_LINE); 
4. Define a vector V of type CACHE_LINE with 

dimension V_size into the Global Memory; 
5. Define Integer vectors L1_t_hit and L1_t_miss 

with dimension V_size into the Shared Memory; 
6. For each element v[I] of the vector V  

6.1. Write T into V[I];   
7. For each element v[I] of the vector V  

7.1. t1 = clock(); 
7.2. Read the value of V[I] and save it into a 

register R; 
7.3. t2 = clock(); 
7.4. L1_t_miss[I] = t2 – t1; 

8. Wait for exposition to neutrons; 
9. err = 0; 
10. For each element v[I] of the vector V { 

10.1. t1 = clock(); 
10.2. Read the value of V[I] and save it into a 

register R; 
10.3. t2 = clock(); 
10.4. L1_t_hit [I] = t2 – t1; 
10.5. err += BitwiseCheck(R , T);  } 

11. print (err); } 
 

Fig. 3. The pseudo-code of the algorithm for the L1 cache. 
  

In Figure 4, the algorithm proposed to manage the 
radiation experiment targeting the shared memory embedded 
in each SM is shown. The algorithm is similar to the one 
proposed for the L1 cache. The data structure used for this 
algorithm is a vector V defined into the shared memory of the 
addressed SM (through the CUDA keyword __shared__) 
whose size is equal to the size of the shared memory; each 
element of V is composed of a type S_MEM_LINE, i.e., a data 
structure we defined for this purpose, whose size is equal to 
128 bytes. This algorithm is composed of two major steps; in 
the step 5, the shared memory is initialized with the value T 

(all 0’s or all 1’s) chosen by the user; in the step 8 all the 
shared memory locations are read, and the values are 
controlled with a bitwise check: in this way it is possible to 
understand if during the step 6 a radiation damaged one or 
more bit values of the shared memory. 

 
T = all 0’s | all 1’s; 
Radiation_test_Shared Memory (T){ 
1. S_MEM_size = size of the shared memory; 
2. Define type S_MEM_LINE;  /*128 byte*/ 
3. V_size= S_MEM_size / sizeof (S_MEM_LINE); 
4. Define a vector V of type S_MEM_LINE with 

dimension V_size into the Shared Memory; 
5. For each element v[I] of the vector V  

5.1. Write T into V[I]; 
6. Wait for exposition to neutrons; 
7. err = 0; 
8. For each element v[I] of the vector V{ 

8.1. Read the value of V[I] and save it into a 
register R; 

8.2. err += BitwiseCheck(R , T);  } 
9. print (err); } 

 

Fig. 4. The pseudo-code of the test for the shared memory.  
B. Algorithm for L2 cache  

Figure 5 shows the algorithm we propose to manage the 
radiation experiments for the L2 cache. Once more, the 
proposed algorithm can be executed by a single thread 
instantiated in a single SM. In order to avoid that the 
functionalities of the L2 cache are influenced by the L1 cache 
(especially when the number of clock cycles needed to 
manage a cache hit or a cache miss are measured), the L1 
cache must be disabled during this test; to do this, the CUDA 
parameters –Xptxas –dlcm=cg have to be used at compile 
time. 

 
T = all 0’s | all 1’s; 
Radiation_test_L2 (T){ 
1. L2_size = size of the L2 cache; 
2. Define type CACHE_LINE; /*128 byte*/ 
3. V_size= L2_size / sizeof (CACHE_LINE); 
4. Define a vector V of type CACHE_LINE with 

dimension V_size into the Global Memory; 
5. Define Integer vectors L2_t_hit and L2_t_miss 

with dimension V_size into the Shared Memory; 
6. For each element v[I] of the vector V  

6.1. Write T into V[I]; 
7. Clear the L2 Cache; 
8. For each element v[I] of the vector V  

8.1. t1 = clock(); 
8.2. Read the value of V[I] and save it into a 

register R; 
8.3. t2 = clock(); 
8.4. L2_t_miss [I] = t2 – t1; 

9. Wait for exposition to neutrons; 
10. err = 0; 
11. For each element v[I] of the vector V { 

11.1. t1 = clock(); 
11.2. Read the value of V[I] and save it into a 

register R; 
11.3. t2 = clock(); 
11.4. L2_t_hit [I] = t2 – t1; 
11.5. err += BitwiseCheck(R , T);  } 

12. print (err); } 
 

Fig. 5. The pseudo-code of the test for the L2 cache.  
 

The algorithm we designed for the radiation test of the L2 
Figure 4.7. The pseudo-code of the algorithm for the L2 cache.

Algorithms execution mode

In this section, the execution mode of the proposed algorithms is presented, consid-
ering their execution in a GPGPU environment. When the goal of the test is the
evaluation of the soft-error sensitiveness of the L1 cache and of the shared mem-
ory, it is necessary that only one thread in a SM composing the GPGPU under
test executes the proposed algorithms. In this way, it is possible to acquire the data
about the radiation sensitiveness of a single memory (i.e., the L1 cache or the shared
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memory) at a time. This is what that has been done in the experiments described
in Section 4.1 of this PhD thesis. Moreover, if the goal is to evaluate the radiation
sensitiveness of all the L1 caches and of all the shared memories embedded in the
GPGPU under test, it is required to activate a thread (executing the algorithms
proposed in Sections 4.4.1) in each SM composing the GPGPU. These threads will
be executed in parallel by the GPGPU and each of them will use a di↵erent input
data vector to load into the addressed memory the user defined pattern.

On the other hand, considering the test of the L2 cache, since this memory
is a unique memory shared by all the SMs composing the addressed GPGPU, it is
necessary that only one thread activated in one SM executes the algorithm proposed
in Section 4.4.1.

4.4.2 Experimental Results

In this section the most important results obtained applying the proposed method
are presented, together with some details about the experimental environment. Fi-
nally, some conclusions and future works related to this activity are explained.

As concern the neutron test setup, radiation experiments were performed in May
2013 at the VESUVIO neutron facility at ISIS, Rutherford Appleton Laboratories
(RAL), Didcot, UK. The device under test has been irradiated with the available
spectrum, that has been already demonstrated to be suitable for emulating the
atmospheric neutron flux [103]. The available flux for energies above 10 MeV was
of about 3.4 ⇤ 105n/(cm2 ⇤ s) at 137 cm from the beam source, where the CARMA
DevKit was placed. Since for the same energy spectrum the neutron flux at sea level
has been measured to be of about 13n/(cm2 ⇤h) [105], ISIS provides an acceleration
factor of about 108.

Irradiation was performed at room temperature with normal angle of incidence
and the beam was focused on a spot with a diameter of 2 cm plus 1 cm of penumbra.
The side of the spot is su�cient to uniformly irradiate the GPGPU chip, leaving
the ARM processor, the control circuitry, and critical peripherals out of the beam.
This is essential for preventing neutron-induced errors on power switches, which may
compromise the experiment, and on the PCI express protocol that manages the data
communications between the CPU and the GPGPU. The ARM processor, running
a Linux Ubuntu embedded operative system, has been linked through an Ethernet
cable to an external controlling computer located in the control room. Moreover,
leaving the ARM core out of the beam allowed to safely supervising the experi-
ments from the control room without any error occurrences on the experimental
data transmission.

Neutrons are known to generate also permanent failures in electronic devices
(e.g., latch-ups) that may cause severe e↵ects on the device functionalities. A latch-
up is a radiation-induced short circuit that, if not promptly detected, may destroy

74



4 – Reliability evaluation and mitigation of GPGPUs

the device. During the test execution the devices under test functionalities have been
monitored while the beam was turned o↵, and never observed any misbehavior: this
allow to state that the tested GPGPUs are not prone to experience single event
latch-ups.

The performed analysis is based on three experimental campaigns, one related
to each memory block (L1 cache, L2 cache and shared memory). Each experimen-
tal campaign consists of the execution of the related monitoring programs (i.e., the
algorithms presented in Section 4.4.1) in the considered GPGPU. Each monitoring
program is supported by the Linux Embedded Operating System (Ubuntu 10.04),
running on the ARM processor: it provides a continuous transmission of the experi-
mental data to the external controlling computer; please note that the transmission
is performed by the ARM core without any intrusiveness to the GPGPU compu-
tation: the Operating System first collects and then analyzes the data provided
by the GPGPU execution of the monitoring program, without interfering with its
computation. In details, during the execution of each program on the GPGPU the
Operating System running in the ARM processor sends to the controlling computer
the iteration ID, thread ID, Streaming Multiprocessor ID, and the number of errors
possibly identified by the monitoring program.

Furthermore, when L1 and L2 caches are considered, also the cache miss and hit
times, measured by the monitoring program during each cache access, are forwarded
to the external controlling computer. This allows identifying any error happening
in the cache tags or control logic, by checking whether the cache hit times are
homogeneous and coherent with the expected values: if a fault occurs in a cache tag,
the data stored in the corresponding cache line cannot be loaded by the processor
and, consequently, a cache miss is generated, while the expected behavior is a cache
hit. The opposite behavior (a cache hit instead of a cache miss) is extremely unlikely.

When performing L1 cache or shared memory radiation experiment, a single
thread has been activated, executing the corresponding algorithm on each SM; if
the test of the L2 cache is executed, one thread in one SM executes the algorithm.
The exposure time for the three algorithms (referred in the Figure 4.5, Figure 4.6,
and Figure 4.7 as step Wait for exposition to neutrons) has been set equal to about
10s, in order to make negligible (1) the time required to load the memories with
the specific values, and (2) the time required to check the content of the memories
after the neutron exposition. At the end of the radiation test campaign the whole
number of errors observed per GPGPU memory module has been counted. In order
to properly compare the sensitivity of each memory module, the GPGPU cross-
section has been computed by dividing the number of observed errors per time unit
in each module by the number of exposed bits and the average neutrons flux (number
of particles hitting the device per unit area and unit time). The main obtained
results are reported in Table 4.1: the cross-section data is computed considering
all the error events experienced during the whole testing time. Considering the
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estimation of the uncertainty, the 95% confidence interval of the cross section data
reported in Table 4.1 is estimated to be equal to the 10% of the value in the worst
case due to a statistical error. Moreover, the experiments have been performed by
applying homogeneous pattern (e.g., all 0s and all 1s) since these patterns allow a
right characterization of the memory cell transitions 0 to 1 and 1 to 0 [104].

The ISIS beam features a 1/E spectrum, which is similar to the terrestrial one
with an acceleration factor between 107 and 108 in the energy range 10 - 100 MeV
[103]. As the neutron spectrum available at ISIS resembles the atmospheric one,
it is also possible to predict the Failures In Time (FIT) (i.e., error every 109 hours
of operation) of each considered memory resource on a realistic application; this is
achieved by multiplying the experimental cross section (see the second column of
Table 4.1) by the flux of neutrons with energies higher than 10 MeV that reach
the ground (about 13n/cm2 ⇤ h) [105]. The FIT figures calculated for each of the
considered memory are reported in the second and in the last column of Table 4.1. In
[107] the error rate at New York City for several SRAM cells built with various design
rules are shown to be in the range between 10�4 and 10�2 FIT. Unfortunately, there
are only few data presented for advanced technologies like the ones considered in
this work. The values measured with the proposed test platform are lower than the
ones reported in [107], in agreement with prediction on future technology reliability
trends. In fact, novel technologies are expected to have an increased reliability with
respect to mature ones. A reduced transistor dimension lowers the device cross
section, as the exposed area becomes smaller. Nevertheless, reducing the feature
size typically reduces the device node capacitance. It is possible that a neutron
hitting a bit cell in an advanced device built with a 40 nm technology node (like the
tested devices) or smaller may have a higher probability of generating a failure with
respect to a neutron hitting a bit cell in a more mature device (like the one presented
in [107]). The combination of reduced sensitive area and capacitance is expected to
bring an overall benefit in reducing the radiation sensitivity for future technologies
[108]. The supply voltage plays a key role in the radiation sensitivity of memory cells.
Reducing the memory cells supply voltage has the drawback of linearly increasing
the device radiation sensitivity [109]. For current and future devices, the voltage
reduction per generation is limited to 5-10% [110]. Hence, no significant radiation
sensitivity increase is expected in advanced devices with respect to mature ones
due to a reduced supply voltage. As supply voltage reduction in future technology
generations is expected to be small, it is possible to anticipate that increases in
circuit sensitivity will be relatively small.

As the reader can notice, the shared memory cells appear to be less sensitive
than the L1 and L2 cache ones. However, the reported figure is comparable with
the sensitivity of L1 cache, whose cells are about twice as sensitive as the shared
memory ones. Vice versa, the L2 cache appears to be an order of magnitude more
sensitive if compared to the shared memory and the L1 cache. In fact, the L1
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cache and the shared memory have a similar function in a GPGPU and are built
with similar architectures as they both need to be extremely fast to reduce memory
access latencies [102]. On the contrary, the L2 cache needs to be compact and dense
to reduce silicon area and is likely to have a di↵erent architecture than the L1 and
shared memory [102].

If the GPGPU whole memories area is considered, the device FIT ratio is far
from being negligible. Considering the di↵erences in terms of SER between the
two di↵erent patterns, it is possible to highlight that about 70% of errors due to a
transition from 0 to 1 (i.e., applying the pattern all 0s), and 30% due a transition
from 1 to 0 (i.e., applying the pattern all 1s) for the three addressed memories. Such
a great di↵erence among 1s and 0s sensitivities has already been observed in other
technologies and devices and relies mostly on the asymmetry of SRAM cells [104].

If the assumption that the three memories are implemented with the same VLSI
technology is considered, the sensitivity di↵erence may be due to the di↵erent ar-
chitectural organization of the memory cells. On the basis of the achieved results,
the L1 cache and the shared memory are implemented using the same type of cells
and that the architectural organization is homogeneous. This is also supported by
the fact that the shared memory and the L1 cache dimension can be multiplexed by
the user at compilation time. Vice versa, with the obtained results it is possible to
support the hypothesis that the L2 cache is implemented using heterogeneous cells
according to the RAM scratchpad or Local Store principle [106] which results in a
higher radiation e↵ect sensitivity.

The proposed method and the acquired data are extremely important since they
are useful to understand the soft-error reliability of the main memories embedded in
a NVIDIA GPGPU, since these data are not always published by the manufacturer
of the device. Moreover, the GPU producers, like NVIDIA, are likely to know the
soft- error sensitiveness of the memory array they use, since this kind of data is
provided by the manufacturer. Nevertheless, the operative soft error reliability of
the memory array when embedded in the final products may significantly di↵er from
the stand alone memory array.

During the experiments, several Single Event Functional Interrupts (SEFIs) oc-
curred. The e↵ects due to this kind of errors have not been considered, since it is
not in the scope of the work: in case of a SEFI during the experiment, the com-
plete experiment has not been considered. This decision was taken because with the
current setup it is not possible to understand if the SEFI was caused by a memory
misbehavior or by other sensitive elements.

In this particular set of experiments, MBUs have not been observed. To the best
of my knowledge, MBUs due to a single particle have not been experienced since
the flux provided by the ISIS facility is relatively low, while the MBUs caused by
multiple particles have not been experienced due to (1) the exposure time for the
three algorithms (referred in the Figure 4.5, Figure 4.6, and Figure 4.7 as step Wait
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for exposition to neutrons) has been set to a relatively short duration (10s, as ex-
plained previously), and (2) at the end of each iteration of the proposed algorithms,
the addressed memory has been completely reload with the selected patterns, thus
avoiding the accumulation of errors in subsequent experiment iterations.

Finally, analyzing the collected access timing data about the L1 and L2 cache hit
and miss, 367 cases of L1 cache access misbehavior and 66 cases of L2 cache access
misbehavior have been observed; the number of cache line accesses performed in the
experiments is the same for both the caches, and it is equal to 106 accesses each.
None of the observed SEUs a↵ecting the cache tags caused a miss to turn into a
hit: clearly, in this scenario a corruption of one of the bit composing a cache tag
could only cause a cache hit to become a cache miss. Instead, it is not possible that
a cache miss becomes a cache hit, since all the data to be read at the end of the
neutron exposure are already present in the cache itself; consequently, the expected
behavior, in case the cache tags are not corrupted by the radiation exposure, is a
sequence of cache hits, while in case a cache tag has been corrupted by a neutron,
the only possible behavior is that a cache hit becomes a cache miss. This is the
reason why in this experiments any transformation from a cache miss to a cache hi
has been observed; hence, only performance degradation was experienced as a result
[90].

Table 4.1. GPGPU memory error cross-section and FIT. The 95% confi-
dence interval is estimated to be equal to the 10% of the value in the worst
case due to a statistical error.

Module Soft error
cross-section
(cm2/bit)

F.I.T.
(per bit)

Soft error
cross-section
(cm2/device)

F.I.T.
(per device)

L1 cache 5.40E-15 7.02E-5 1.42E-09 1.84E01
Shared
memory

3.15E-15 4.09E-5 2.48E-09 3.22E01

L2 cache 1.29E-14 1.60E-4 1.35E-08 1.68E02

As a conclusion of this research activity, in this section a new method allow-
ing to e↵ectively evaluate and analyze the radiation e↵ects in GPGPU L1 and L2
data caches and shared memory has been presented. Despite of the few informa-
tion delivered about the memory architecture and the di�culties in accessing them
directly, the proposed algorithms allow to e�ciently face these problems, so that
the addressed memories can be properly initialized and read when radiation ex-
periments are performed. The proposed algorithms have been validated through
neutron-based radiation test experiments. The collected results provide some first
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data about the sensitivity to radiation e↵ects of memory modules within GPGPU
devices. The reported figures can be crucial for evaluating the reliability of appli-
cations resorting to GPGPUs and to support the application engineer in decisions
related to the possible usage of the addressed memories. As future works, an exten-
sion of the presented analysis will be executed, in order to address the internal logic
modules controlling the memories, either shared and cache, and to devise methods
to increase the GPGPU memories reliability.

4.5 Evaluation of Embedded GPGPU algorithms

In this section the soft error sensitiveness data of a typical parallel algorithm, ex-
ecuted with di↵erent GPGPUs cache configurations is presented. Moreover, the
data about the same algorithm, but executed with di↵erent threads distribution
are also highlighted, in order to provide an estimation of the most reliable GPGPU
configuration when running a common algorithm. In order to be fully compliant
with the Degree of Parallelism (DOP) adopted by embedded GPGPUs, the pro-
gressive reduction of the FFT parallel tasks from iteration to iteration has been
considered, depicting both overall GPGPU cross-section and the error rate for all
the FFT stages. this algorithm has been selected for this evaluation since the pro-
gressive reduction of the parallel tasks is a common behavior of several GPGPUs
algorithms (e.g., the Breadth-First Search - BFS algorithm, where the 30% of the
GPGPU execution time is managed by one thread), and it is called underutilized
parallelism in GPGPU computing [120]. Consequently, even if the analysis is per-
formed only on the FFT algorithm, the results and discussion presented in tho PhD
thesis within this context are extendable to any other similar parallel algorithms for
embedded GPGPUs. The proposed analysis has been implemented on a device by
NVIDIA with Fermi architecture and the data has been acquired in an extensive
radiation campaign at the ISIS facility in the Rutherford Appleton Laboratories
(RAL) in Didcot, UK. The gathered experimental results provide interesting data
about the sensitivity to radiation of GPGPUs device when di↵erent configurations
are considered.

4.5.1 Proposed method

The main goal of the proposed research work is to evaluate how parallel algorithms
behave when executed in embedded GPGPUs. Additionally, an investigation on
how the radiation-induced errors propagate in the parallel algorithm till reaching
the output is also performed. Such a study is of great interest as it highlights the
weaker parts of the code that should be hardened to increase the device reliabil-
ity. Additionally, the e↵ects of di↵erent threads and caches distributions on the
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GPGPUs output error rate are analyzed. In this way it is possible to understand
which GPGPU configuration ensures the highest level of reliability under several
constraints.

The choosen benchmark is the Cooley-Tukey algorithm [122], the most common
FFT implementation for embedded applications. Cooley-Tukey algorithm allows to
reduce the computations complexity from O(N2) to O(N ⇤ log2N), where N is the
number of the input data. The input data of the tested algorithm is composed of
65,536 complex numbers, each of which represented with 2 float values.

First of all, a CUDA version of that algorithm has been implemented, taking into
account the parallel resources, the memory usage, and the programming paradigm
provided by the NVIDIA environment. In Figure 4.8, the Degree Of Parallelism
(DOP) of each stage is outlined. At each stage a FFT butterfly unit [123] combines
the results of two smaller Discrete Fourier Transforms (DFTs) into a large DFT
[124]. The butterfly units on a stage can be executed in parallel, while to start
the next stage computation it is necessary to wait for the current stage computa-
tion to be completed. The number of parallel tasks required for computation, then,
decreases exponentially from a stage to the following one. In the tested code the
number of stages required to solve the problem is 16, since the input data are 65,536
complex numbers. The stages management is a task of the host device that controls
the GPGPU, which computes, per each stage, the optimal number of threads and of
thread blocks to be instantiated (considering the addressed GPGPU configuration).
In the ideal solution for performances each thread should compute only one butterfly
unit of the Cooley Tukey algorithm [123]. Nevertheless, since the required number of
threads would be too high (almost 32K in the case of 65,536 input numbers), in the
initial stages of the computation each thread is asked to compute one or more but-
terfly units. In the initial stages of the algorithm the GPGPU is then fully loaded,
while in the final stages the number of the parallel processes needed decreases, be-
coming lower than the number of computing units available in the NVIDIA Quadro
GPGPU. In the last stage, for instance, a single process is instantiated (see Figure
4.8). It is worth noting that such a behavior of having the GPGPU fully loaded
only in the early stage of computation is typical of embedded GPGPUs. On the
contrary, GPGPUs used in High Performance Computing (HPC) usually are con-
tinuously loaded to take full advantage of their computational capabilities.

In the FFT algorithm execution addressed in the context of this PhD Thesis,
the L1 caches are always fully exploited (when they are enabled), since the number
of input data is big (65,536 complex numbers); consequently, the reliability impact
of the L1 caches in the di↵erent steps of the algorithm execution is the same.

To characterize the behavior of embedded GPGPUs the FFT algorithm has been
developed in order to instantiate a maximum of 2 thread blocks and 64 threads per
block (FFT 64), and then 2 thread blocks and 32 threads per block (FFT 32). As
2 SMs are available in the tested GPGPU, the block scheduler is not activated.
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FFT 32 does not require thread scheduling, since the 32 instantiated threads can
run at the same time in parallel given that 48 are available per SM in the Quadro
1000M GPGPU. Vice versa, for the FFT 64 configuration the thread scheduler is
mandatory since the parallel threads instantiated exceed the maximum threads that
can be executed in parallel. Moreover, the FFT algorithm with 2 thread blocks, 64
threads per block and the L1 cache of each SM disabled (FFT 64 NOL1) has been
also tested. Disabling the L1 may sensibly reduce the number of errors observed at
the output. Even if performances are likely to be a↵ected when L1 is disabled (see
Figure 4.9, and Figure 4.12), on safety critical applications the execution time is not
as critical as reliability.

The considered configurations have di↵erent execution times. In Figure 4.9, the
total GPGPU Kernel time for the di↵erent GPGPU configurations is shown: FFT 32
kernel time increases of about 21.8% with respect to FFT 64, while disabling the L1
cache increases execution time of only about 4.5%. The performances degradation
is not remarked as the L1 cache, although completely filled during computation
(the tested FFT uses about 1MB of data), is used only for reading operations.
Consequently, the writing operations (about 65,536 for each stage) performed by
the FFT algorithm don’t involve the L1 cache. As reported in Figure 4.12, the
FFT 32 and FFT 64 have the same kernel time after the stage 9, but in the stages
1 to 9, the kernel time of the FFT 32 is almost the double if compared with the
FFT 64 configurations.

In Figure 4.10 and Figure 4.11 the profile of the used Thread Blocks and of the
number of threads used in each block, considering the FFT stages, is shown. More in
particular, the number of the parallel tasks decreases after the stage 9, in case of the
FFT 32 configuration is used, and after the stage 10, in case the used configuration
is FFT 64. In these figures, the profile of the FFT 64 NOL1 configuration is not
reported, since this configuration is equal, in terms of used threads and blocks, to
the FFT 64.

Considering the GPGPU utilization shown in Figure 4.11, Figure 4.11, and Fig-
ure 4.12, an higher number of errors in the first stages of the FFT algorithm ex-
ecution, i.e., when all the computational resources of the GPGPU under test are
fully exploited, is expected. Finally, considering the FFT behavior, the proposed
analysis is valid for all the GPGPU algorithms with a similar usage of the L1 cache,
i.e., the algorithms that initially acquire the required data from the L1 cache, and
then make a long computation (in terms of clock cycles) without interacting more
with the cache itself. It is clear that the data reported in this section are not com-
pletely suitable for the algorithms that continuously access the data stored in the
considered cache.

81



4 – Reliability evaluation and mitigation of GPGPUs

2"point"DFT"

2"point"DFT"

2"point"DFT"

2"point"DFT"

Combine"a"2"
points"DFT"

x(0)"

x(4)"

x(2)"

x(6)"

x(1)"

x(5)"

x(3)"

x(7)"

Combine"a"2"
points"DFT"

Combine"a"4"
points"DFT"

X(0)"

X(1)"

X(2)"

X(3)"

X(4)"

X(5)"

X(6)"

X(7)"

In
#o
rd
er
(O
ut
pu

t(d
at
a(

N
ot
(In

#o
rd
er
(O
ut
pu

t(d
at
a(

t(Stage"1" Stage"2" Stage"3"

4(parallel(tasks( 2(parallel(tasks( 1(tasks(

Figure 4.8. The representation of the butterflies for each stage of the FFT al-
gorithm, independently from the GPGPU configuration. The number of parallel
tasks at each stage (highlighted with boxes in the figure) decreases exponentially
from a stage to the following one.

Figure 4.9. The total GPGPU Kernel Time increases in the cases of 32 thread
(FFT 32) and disabling the L1 cache (FFT 64 NOL1).
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Figure 4.10. The number of the used Thread Blocks per each FFT Stage .

Figure 4.11. The number of the used Threads per Block in each Stage
of the FFT algorithm.

4.5.2 Experimental setup

Radiation experiments were performed at the VESUVIO neutron facility at ISIS,
Rutherford Appleton Laboratories (RAL), Didcot, UK in December 2013. The de-
vice has been irradiated with the available spectrum that has been already demon-
strated to be suitable for emulating the atmospheric neutron flux [103]. The avail-
able flux was of about 3.89 ⇤ 104n/(cm2 ⇤ s). Irradiation was performed at room
temperature with normal angle of incidence and the beam was focused on a spot
with a diameter of 2 cm plus 1 cm of penumbra. Spot size is su�cient to uniformly
irradiate the GPGPU chip, leaving the ARM processor, the control circuitry, and
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Figure 4.12. The GPU Kernel time per each FFT Stage.

critical peripherals out of the beam. This is essential for preventing neutron-induced
errors on power switches, which may compromise the experiment, and on the PCI
express protocol that manages the data communications between the CPU and the
GPGPU.

4.5.3 Experimental results

Figure 4.13 shows a detailed analysis of the observed errors propagation in the FFT
algorithm reporting the error rate of each stage of the FFT algorithm (i.e., the
number of errors generated in a stage divided by the time required to compute the
stage itself). As it can be noticed, in the initial stages of the algorithm (from stage
1 to stage 10) the error rate is much greater than in the later stages. In stages from
0 to 10 the GPGPU is fully loaded since the instantiated parallel processes exceeds
the GPGPU parallel resources and the thread schedulers is active. From stage 11
to 15 the number of threads instantiated is lower than the number of available SPs,
till the extreme case of stage 15 in which a single thread is active (see Figure 4.8).
The area exposed to radiation is then the whole GPGPU in the first 11 stages, and
then decreases making it more likely for the GPGPU to be corrupted when fully
loaded. Moreover, in some stages of the FFT algorithm, any error has been detected
during the execution of the experiments (in all the considered configurations). This
is mainly due to the fact that the error rate was low if correlated to the area exposed
to neutron radiation.

Figure 4.14 shows the experimentally obtained cross sections for the three dif-
ferent tested GPGPU configurations (FFT 64, FFT 64 NOL1, and FFT 32). The
cross section was measured dividing the number of observed error per second by the
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average neutron flux. For each cross section value the confidence interval (drawn
with oblique lines) calculated considering a statistical error of 10% in the worst case
is also reported. As it can be noticed, even if the algorithm and thus the workload
is the same, the three configurations show di↵erent cross sections. Such a di↵erent
sensitivity to radiation relies on the amount of resources required to compute the
solution more than in the workload that, again, is constant in the three tested cases.

It is clear from Figure 4.14 that, as expected, disabling the L1 caches reduces
the cross section of the algorithm of 38%, while the performance overhead is not
so relevant (about 4.5%, as already explained in the previous section and in Figure
4.9). As said, the significant decrease of the cross section is mainly due to the
fact that the L1 cache is a very sensitive memory [8]. The contribution of L1
caches corruption in the overall SM radiation sensitivity is not negligible, especially
when the algorithms perform a large amount of memory accesses. Obviously, when
disabling L1 caches the execution time is increased (see Figure 4.9). Nevertheless, in
safety critical applications, performance may be sacrificed to gain higher reliability.
It is worth noting that even if performances are not a major concern, having a longer
execution time will force the GPGPU to be irradiated for a longer time before solving
the assigned task. As demonstrated in [126], it is essential to carefully evaluate if
disabling caches actually improve the device reliability.

FFT 32 has a 25% higher cross section than FFT 64. Limiting the number of
parallel threads per block seems to increase the GPGPU sensitivity. This behavior
is mainly due to a di↵erent data distribution in the GPGPU caches. The 32 instan-
tiated threads per block in FFT 32 are always active in a SM (each SM is composed
of 48 SP); consequently, the data used by the threads in FFT 32 is present in the
L1 cache for all computation. On the contrary, in FFT 64, the number of instanti-
ated thread (i.e., 64) imposes the thread scheduler to continuously swap the active
threads. The data in the L1 cache is then refreshed frequently. If data is refreshed
frequently, the Time Vulnerability Factor [121] (TVF, i.e., the portion of time during
which data is critical and a corruption propagates to the output) becomes smaller,
and possible error caused by a radiation is more likely to corrupt obsolete data.
When threads scheduling is enabled, as in FFT 64, a refresh of the data stored in
the L1 cache is expected and, thus, the cross section is lower.

As already highlighted in the previous paragraph of this section, comparing the
FFT 32 and FFT 64 configurations, it is possible to notice that FFT 32 has an
higher cross section and an higher kernel time. It must be underlined that these
two behaviors are not correlated, since the cross section values have been calculated
dividing the number of observed errors per second by the average neutron flux
(about 3.89 ⇤ 104n/(cm2 ⇤ s)) present during our experiments. Consequently, the
higher execution time of the FFT 32 configuration is not the reason of the higher
cross section. The reason of this e↵ect is the di↵erent Time Vulnerability Factor of
the data present in the L1 caches due to the di↵erent threads number executing the
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Figure 4.13. The error rate of the di↵erent stages of the FFT algorithm, for
each GPGPU configuration.

same FFT algorithm.

The most interesting point highlighted by the reported data is that, when the
reliability of a GPGPU is a concern, all the stages of the algorithms should be
carefully designed. The designers of safety critical applications to be executed on
GPGPUs should, in fact, take into account that the reliability of the GPGPU appli-
cations varies according to the number of parallel tasks running at the same time in
the GPGPU itself, as shown in Figure 4.8. Moreover, hardening techniques should
be tuned taking into account that most errors occurs in the early stages of the
algorithm, when the GPGPU is fully loaded.

From data depicted in Figure 4.8 and Figure 4.14, it is clear that disabling the L1
caches (contained in the SMs embedded in the considered GPU), the impact in terms
of performance is low, but the reliability of the GPU device increases significantly.
This is a very important aspect when the design of safety critical applications is
addressed: the tradeo↵ between the reliability improvement and the introduced
overhead is one of the most important parameter that has to be considered. With
the presented analysis, it is possible to understand that, if the algorithm has to
be used in safety critical GPGPU applications, disabling the L1 caches represent a
good solution in terms of reliability and performance overhead.

As a conclusion of this research activity, in this section the reliability of em-
bedded GPGPUs has been addressed, and the cross section of di↵erent embedded
GPGPU configurations running the FFT parallel algorithm based on the Cooley
Tukey method has been experimentally determinated. The results show that the
most reliable configuration is obtained disabling the L1 cache memory. Moreover,
on embedded GPGPUs oriented to safety critical applications the number of parallel
processes to instantiate should be carefully design to avoid undesired behaviors.
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Figure 4.14. The cross section of the di↵erent configurations of the FFT algorithm.
The confidence interval (drawn with oblique lines) has been calculated considering
a statistical error of 10% in the worst case.

4.6 Fault tolerance techniques evaluation

Due to their internal structure complexity, GPGPUs show a relatively high sensi-
tivity to soft errors. Hence, there is some interest in devising and applying software
techniques able to exploit their computational power by just acting on the executed
code. In this section some preliminary results obtained by applying two di↵erent
software redundancy techniques aimed at soft-error detection are presented; these
techniques are completely algorithm independent, and have been applied on a sam-
ple application running on a Commercial-O↵-The-Shelf GPGPU. The results have
been gathered resorting to a neutron testing campaign. Some experimental results,
explaining the capabilities of the methods, are presented and commented, along with
some activity conclusions.

Considering the related works in this area, in [115] three redundancy techniques
are presented, applied on di↵erent GPGPU architectures, with a particular em-
phasis on the evaluation of the e↵ects on performance. In this work the authors
propose three di↵erent methodologies based on software addressing soft-error relia-
bility based on redundancy; moreover, they also discuss how these approaches can
be enhanced by adding ECC/parity protection in o↵-chip global memory and in on-
chip memory [115]. Finally, a detailed evaluation of the performance reduction due
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to the introduced redundancy is presented. This research work represents the first
work in the field of the software soft-error detection related to GPGPUs, but the
proposed techniques have not been validated with a fault injection experiment cam-
paign. As a consequence, the research work proposed in this section provides the first
experimental data about the evaluation of algorithm-independent techniques aimed
at the detection of soft-errors on GPGPUs; the considered hardening solutions have
been evaluated with neutron radiation experiments: the main scientific contribution
provided by this research work is the possibility of e↵ectively evaluating the im-
pact of soft-error detection techniques applied to a common benchmark application
running on a Commercial-O↵-The-Shelf GPGPU. As a benchmark application the
matrix multiplication algorithm has been selected, since it is very commonly used
for the experiments in the field [95] [97].

4.6.1 Developed method

In this section the soft error detection techniques addressed in this work are pre-
sented. The choosen techniques are based on time and thread redundancy [115].
In the following sections the steps required to apply the redundancy techniques to
applications running on a NVIDIA GPGPU based on Fermi Architecture are shown.
Moreover, for each technique two di↵erent approaches are presented:

• redundancy-based with common input data;

• redundancy-based with di↵erent instances of the input data.

The goal is the evaluation of the soft-errors detection capability of these four meth-
ods. The proposed redundancy methods are completely algorithm-independent and
are easily applicable to any algorithm running on a GPGPU. The soft error detection
capability of these methods has been validated through neutron injection campaigns;
a detailed report of the detection capability and of the introduced temporal overhead
of the considered methods is discussed in Section 4.6.2 .

Time redundancy fault detection approach

The time redundancy fault detection approach is based on forcing the GPGPU to
execute twice the same code on the same data, and then checking the two sets of
results for consistency. In Figure 4.15, the diagram representing the sequence of
steps performed by both the host computer (denoted as CPU) and the GPGPU
is shown. In particular, the sequence is composed of 5 main steps: initially, the
host initializes the device memory, writing into it the source data D and allocating
the result memory area; in the second step the selected algorithm is executed in
the GPGPU, and then the result R is acquired by the host; in the third step, the
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performs the comparison between R and R’.   

 

 
 

Fig. 3. Sequence diagram of the time redundancy approach with common 
input data. 
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Figure 4.15. Sequence diagram of the time redundancy approach with
common input data.

algorithm is executed again, generating the second instance of the result R’, using
the same source data D used in the step 2. Then, the device memory is cleared.
Finally, the host performs the comparison between the two obtained results R and
R’.

In Figure 4.16, the same diagram is shown for the same time redundancy ap-
proach, now implemented with two input data instances. In this case the two al-
gorithm computations produce the results R (normal computation) and R’ (replica
computation) operating with two di↵erent instances of the input data D and D’. If
compared with the time redundancy method with common input data (see Figure
4.15), there are two additional steps, i.e., steps 3 and 4; these two new iterations
are required to clear and then re-initialize the device memory with a new instance
of the source data D’ at the end of the first algorithm computation (which produces
the result R). In the step 5, the algorithm is executed again using D’ as input data
and producing R’ as a result. Finally, the host performs the comparison between R
and R’.
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input data and producing R’ as a result. Finally, the host 
performs the comparison between R and R’.   
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Figure 4.16. Sequence diagram of the time redundancy approach with
di↵erent input data.

Thread redundancy fault detection approach

The purpose of the thread redundancy method is to exploit the GPGPU capability
of managing a high number of threads in parallel at the same time in order to
implement the redundancy and minimizing the introduced overhead.

In general, the NVIDIA programming model implies that a GPU algorithm is
executed as a grid of thread blocks, each one containing several threads. In the
proposed method, a thread block is internally subdivided in two sets of threads: the
first is executed by a defined set of SPs and produces the algorithm result R, while
the second is executed by a di↵erent set of SPs and produces the replica result R’.
The partitioning of the thread block is performed using the block index and the
thread index, which are available within a kernel function running in a GPU; finally,
the proposed method works properly if only one thread warp is executed by a SM at
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input data and producing R’ as a result. Finally, the host 
performs the comparison between R and R’.   
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Figure 4.17. A simplified representation of the thread redundancy approach
with common input data.

a time, in order to ensure that the threads are not executed in time slice way [98].
In Figure 4.17, a simplified representation of the thread redundancy approach

with common input data is shown; in this case, the two instances of the result R
and R’ are computed using the same instance of the input data D. At the end of
the result computation, R and R’ are read by the host which then performs their
comparison, in order to detect possible errors generated during the computations.

In Figure 4.18, a second version of the same thread redundancy approach is
proposed, in which two instances of the input data (D and D’) are used; consequently,
the two sets of threads operate on a proper instance of the input data, and produce
the results R and R’ in an independent way. Finally, as in the previous cases, the
host reads R and R’ and performs the comparison.

4.6.2 Results

In this section the gathered results and the neutron testing setup are presented.

Neutron testing setup

Experiments have been performed at Los Alamos National Laboratory’s (LANL)
Los Alamos Neutron Science Center (LANSCE) Irradiation of Chips and Electron-
ics House II, called ICE House II, in August 2013. The ICE House II beam line is
a new facility placed at 30° angle from the beam, much like the original ICE House
facility. Both of these facilities provide a white neutron source that emulates the
energy spectrum of the atmospheric neutron flux. The available neutron flux was
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input data and producing R’ as a result. Finally, the host 
performs the comparison between R and R’.   
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Figure 4.18. A simplified representation of the thread redundancy approach
with di↵erent input data.

approximately 1 ⇤ 106n/(cm2 ⇤ s) for energies above 10 MeV. The beam was focused
on a spot with a diameter of 2 cm plus 1 cm of penumbra, which provided uniform
irradiation of the GPU chip without directly a↵ecting nearby board power control
circuitry, ARM processor, and critical peripherals. This is essential for preventing
neutron-induced errors on power switches, which may compromise the experiment,
and on the PCI express protocol that manages the data communications between
the CPU and the GPGPU. The CARMA DevKit board has been located inside
the radiation room and placed at a distance of 70 inches from the beam source;
the ARM processor, running a Linux Ubuntu embedded operative system, has been
linked through an Ethernet cable to a host computer located in the control room.
Moreover, leaving the ARM core out of the beam allowed to safely supervise the ex-
periments from the control room without any error occurrences on the experimental
data transmission.

Radiation testing analysis and results

The purpose of this section is the evaluation of (1) the soft error detection capability
of the proposed methods, and (2) the measure of the performance degradation, i.e.,
temporal overhead, due to the insertion of the replica computation.

The benchmark application used to evaluate the proposed method is the matrix
multiplication algorithm, since this algorithm allows to fully exploit the parallel com-
putational units (i.e., the SPs) embedded in a GPGPU. Nevertheless, the proposed
methods are algorithm independent and are suitable for any GPGPU algorithm.
The implemented matrix multiplication algorithm operates with 2 matrices of 1KB
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size (16x16 integer values) as input data and generates as a result a matrix of 1KB
size. For the experiments with the time redundancy technique16 thread blocks, each
one with 16 threads, have been instantiated, where each thread is in charge of calcu-
lating just one element of the result matrix. For the thread redundancy technique,
instead,16 thread blocks, each one with 32 threads, have been instantiated, where
half of the threads in a block were devoted to compute the results and the other
half to compute the replica.

The experimental campaigns have been performed exposing only the GPUPU
device to the neutron flux; moreover, the experiments have been executed of about
1.5x106 iterations for each of the proposed techniques.

In Table 4.2, the main results obtained during the radiation experiments are
reported, with particular emphasis on the execution times and on the number of
soft error detected. In the second column of Table 4.2 the total time required for a
complete iteration of the matrix multiplication algorithm (for each of the proposed
methods) is reported. In general, when a kernel function is executed into a GPU,
the main steps performed by the CPU and the GPU are three:

• the CPU initializes the GPU memory with the input data;

• the GPU executes the kernel algorithm;

• the results are copied from the device memory into the host memory.

In the third column of the Table 4.2 (i.e., CPU-GPU MemoryCopy Time) the
percent values of the sum of the time required by the step 1 and 3, with respect
to the total iteration time, are reported; instead, the percentage time required to
compute the kernel function is reported in the fourth column (i.e., GPU Kernel
Time). Since the goal of the techniques presented in this section is the evaluation of
the soft error detection techniques applied at the algorithm execution, it is essential
that the time required by the GPU to manage the memory transfers (from and to
the CPU memory) is much less than the time spent to execute the algorithm with
the detection technique. In this way, checking the results one can state that all the
detected errors have been generated during the algorithm execution, and not during
the memory management. Considering the data reported in the fourth column of
Table 4.2, in a single iteration the time devoted to the algorithm execution is greater
than 90% in all the considered cases. To achieve this result, in the experiments the
matrix multiplication algorithm has been modified: the steps needed to compute
each value of the result matrix have been repeated 105 times, adding into the result
matrix the obtained values.

If the execution times are considered, the temporal overhead introduced by the
time redundancy technique is about 100% for both the cases (single data instance
and double data instance), as common in the traditional duplication with comparison
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approaches based on time redundancy [115]. In the thread redundancy approaches,
instead, the temporal overhead is almost negligible, since the threads devoted to the
replica computation are executed in parallel with the threads aimed at the regular
computation.

Considering the detection capability, in the last column of Table 4.2 ( i.e., De-
tected Errors column), for each technique, the percentage of the detected errors with
respect to the observed errors are reported. The detected errors have been gener-
ated by the host device by comparing the two result matrices obtained through the
execution of the redundancy approaches in the GPU. The observed errors, instead,
have been computed by comparing the result matrices with the expected values con-
tained in the CPU memory. As the reader can notice, the error detection capability
of the techniques operating with two instances of the input data is always higher
if compared with the same technique executed with only one instance of the input
data. Moreover, the time redundancy technique with two data instances has the
higher soft error detection capability.

Table 4.2. The results obtained applying the proposed fault detection techniques
to the matrix multiplication algorithm.

Method
1 Iteration Time evaluation

Total
Execution
Time [ms]

CPU-GPU
MemoryCopy
Time [%]

GPU
Kernel
Time [%]

Detected
Errors [%]

Original 12.40 6.89% 98.15% -
Time Redundancy
(2 input instances)

24.50
(+97.58%)

5.71% 94.29% 87.50%

Time Redundancy
(1 input instance)

24.27
(+95.73%)

4.82% 96.18% 68.75%

Thread
Redundancy
(2 input instances)

12.91
(+4.11%)

5.75% 94.25% 75.00%

Thread
Redundancy
(1 input instance)

12.74
(+2.74%)

4.75% 95.25% 62.50%

As a conclusion of this research activity, in this section a couple of methods
aimed to soft error detection for algorithms running on a GPGPU are presented.
The proposed methods have been applied to a benchmark application and have been
validated through neutron-based radiation test experiments. The collected results
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provide some first interesting data about the capability of the traditional soft error
detection techniques if applied to applications running in GPGPU devices.
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Chapter 5

An industrial demonstration: test
and validation of an automotive
timing multicore co-processor
module

Over the past decade, the complexity of electronic devices in the automotive systems
is increased significantly. The today high level vehicles include more than 70 Elec-
tronic Control Units (ECUs) aimed at manage the powertrain of the vehicle, and
improve passengers comfort and safety. ECU microcontrollers aimed at the control
of the fuel injection system have a key role. In this section a new FPGA-based plat-
form is introduced; it is able to supervise and validate Commercial-O↵-The-Shelf
timer modules used in today state-of-the-art software applications for automotive
fuel injection system with an accuracy improvement of more than 20% with respect
to traditional approach. The proposed approach allows an e↵ective and accurate val-
idation of timing signals and it has two main advantages: can be customized with
the exact timing module configurations to meet the constraints of new tests and
allows e↵ective modularity design test. As case study two industrial Time Modules
manufactured by Freescale and Bosch have been used. The experimental analysis
demonstrate the capability of the proposed approach providing a timing and angular
precision of 10 ns and 10�5 degrees respectively.

This work has been done in collaboration with General Motors Powertrain Eu-
rope (site of Torino, Italy).
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5.1 Motivation and introduction

The today automotive development processes are characterized by an increasing
complexity in mechanic and electronic. However, electronic devices have been the
major innovation driver for the automotive systems in the last decade [129][130]. In
this context, the requirements in terms of comfort and safety lead to an increasing
number of on-vehicle embedded systems, with more and more software-dependent
solutions using several distributed Electronic Control Units (ECUs).

Sophisticate engine control algorithms require performance enhancement of mi-
croprocessors to satisfy real-time constraints [131]. Moreover, the code generation,
the verification, and the validation of the code itself, become key part in the automo-
tive domain: the software component development processes have to be as e�cient
and e↵ective as possible. Moreover, without a reliable validation procedure, the
automotive embedded software can lead to a lot of errors and bugs, and decrease
the quality and reliability of application software components.

Electronic devices managing the fuel injection in today engines have a key role,
in order to guarantee e�cient and powerful vehicles [132]. The recent research
works in the area are aimed at reducing the fuel consumption, while maximizing
the power conversion and reducing air pollution emissions [133][134]. As reported
in [135], a major challenge being faced in diesel technology is meeting current and
future emission requirements without compromising fuel economy. Clearly, these
goals could be reached through improvements in the engine electronic management.
In this context, e�cient fuel injection control is required [136].

Given this behavior, microcontrollers devoted to the engine management contain
specific timer modules aimed at generating, among the others, the signals used by
the mechanical parts controlling the fuel injection in the cylinders[137]. The scope
of these timers is to provide the real- time generation of the signals, ensuring an
e�cient engine behavior. In order to achieve the correct level of synchronization
between the engine position and the generated fuel injection signals, the automotive
timer modules typically receive a set of reference signals from the engine; the most
important are the crankshaft and the camshaft [138]. These signals are used to
detect the current engine position, i.e., the angular position of the cylinders within
the engine [139]. A precise detection of these information items represents a key
point for all the electronic engine management [140].

The correct programming of the timer modules is a key aspect in the automotive
domain, due to the complexity of its programming code, and of the applications
they have to manage. Consequently, e�cient and precise validation methods and
platforms are required. The current main methods to validate automotive engine
applications are based on models [136][141][142], or on ad-hoc special purpose test
equipment available on the market [143]. As timer module become more advanced,
it raises the cost associated with validating these new modules, since extremely
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complex and expensive equipment must be adopted and traditional equipment are
no longer able to keep up with constantly changing requirements of these systems.

In this section a new FPGA-based validation platform aimed to the validation of
the applications running in the real-time timer modules used in the today vehicles
is presented. The purpose of this platform is to provide the developers of automo-
tive applications with a flexible and e�cient architecture able to e↵ectively validate
the code running in the most popular timer modules. More in particular, the pro-
posed platform has the capability of generating the engine reference signals (i.e., the
crankshaft and camshaft reference signals) that are typically used by the automotive
microcontrollers to generate the fuel injection signals, and acquiring the signals gen-
erated by the timer module under test, verifying the synchronization between these
signals and the provided engine reference signals. The proposed platform is use-
ful to validate the functioning of several timer modules running in di↵erent engine
configurations (e.g., with di↵erent profile of the crankshaft and camshaft signals).
The platform can be customized with the exact instrument modules to meet the
exigency of new test, it has flexible functionalities for diverse test bench purposes.
Finally, it allows e↵ective testing of modular designs and if compared with tradi-
tional approaches used to test state-of-the-art timer modules, it has an accuracy
improvement of more than 20% [143] providing a timing and angular precision of 10
ns and 10�5 degrees respectively.

As case study, two important timer modules used today in the automotive do-
main have been used: the Enhanced Time Processor Unit (eTPU) developed by
Freescale [144][145], and the Generic Timer Module (GTM) developed by Bosch
[146]. These two modules have been selected since they are used, among the others,
for the generation of the fuel injection signals in several engines; moreover, eTPU
and GTM represent a good set of benchmarks, since the way in which they manage
the automotive applications are di↵erent: in fact, in the eTPU several software rou-
tines share the same processing unit, while in the GTM several tasks can be directly
managed by hardware parallel processing units.

The acquired results demonstrate the validity of the proposed approach, since
using the proposed platform, it is possible to verify the synchronization between the
inputs and the generated fuel injection signals with a very high degree of precision.
Moreover, the proposed platform is able to verify the signals synchronization both
in static engine conditions (i.e., constant engine speed), and in dynamic conditions
(i.e., variable engine speed).

5.2 Related Works

With the development of electronic technology and the application of control theory
in the automotive control [147], many research works have been developed with
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the purpose of improve the control of the fuel injection. The motivation of these
research works is that, nowadays, the fuel injection system is the most important
part of diesel engines, and its working state directly influences the performance, the
consumption and the air pollution, as documented in [132][136][140].

In [132] the authors present a new fuel injection intelligent control system, de-
signed to improve the testing accuracy. The proposed system can automatically
test the state of the injection pump, and it obtains all the parameters of the fuel
injection system without human intervention by the use of PC and AT89C52 sin-
gle chip microcomputer. Such system is designed and realized on the SYT240 fuel
injection system test platform, which can automatically fetch and display the main
parameters. Although the approach presented seems to be promising, it is strongly
based on the usage of a dedicated test platform.

In [133] the authors face the problem of improving the accuracy of the engine con-
trol electronic, and they a�rm that one potential way to do this is by use real-time
in-cylinder pressure measurements. Consequently, the authors propose an approach
that derives the pressure information from the measurement of the ordinary spark
plug discharge current. The motivation of this work is that, by monitoring the
pressure of each cylinder, the electronic engine control can be optimized in terms
of fast response and accuracy, thus enabling online diagnosis and overall e�ciency
improvement.

Another research work addressing the usage of cylinder pressure-based combus-
tion control is presented in [135], where the authors explain that in case of multiple
fuel injections, the timing and the width of the fuel injection pulses need to be opti-
mized. More in particular, this paper presents several methods in which the cylinder
pressure signal is used for multiple-pulse fuel injection management for a diesel en-
gine capable of running in low-temperature combustion modes. In [134] the authors
explain that it is important to avoid discrepancies between the fuel amounts injected
into the individual cylinders, in order to avoid excessive torsional vibrations of the
crankshaft. Consequently, the authors present a general adaptive cylinder balancing
method for internal combustion engines; the proposed algorithm uses online engine
speed measurements. The motivation of this work is that, due to varying dynamics
and ageing of components of the fuel-injection systems, there may be a significant
dispersion of the injected fuel amounts.

In order to implement all the fuel injection optimization methods proposed above,
in the real engine behavior, the engine angular position has to be identified as
precisely as possible. In [144] the authors present an example of engine position
identification by using the eTPU module embedded in the MPC5554 microcontroller.

Another work addressing the problem of a precise angular engine position de-
tection is reported in [140]; more in particular, the authors explain that, due to
mounting and packaging tolerances, the magnetic field at the sensors position varies,
resulting in angular measurement. Mounting and packaging tolerances cannot be
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avoided; consequently, the authors propose a compensation method based on a new
filter structure.

Summarizing, several research works have been developed in the last decade in
order to optimize the fuel injection systems of the today vehicles. In order to achieve
this goal, the usage of specific timer modules, i.e., the eTPU and the GTM, is today
required; the main tasks typically managed by these modules are acquire in a very
precise way the engine angular position, and generate, among the others, the signals
aimed to control the cylinders fuel injection. To do this, these modules have to
be configured, using their specific programming code; this task is a di�cult and
an important part of the fuel injection control systems development, since a small
error can cause relevant problems in the engine behavior, thus compromising the
e�ciency of the entire system.

In the solution proposed in this PhD thesis, an FPGA-based validation platform
able to emulate the engine behavior (i.e., generate the crankshaft and the camshaft
signals) is presented; the main goal of this solution is to acquire the fuel injection
signals generated by the timer module under test; more in particular using this
platform, it is possible to validate the timer module in a very precise way since
the precision of the data acquisition is about 10�5 engine angular degrees, which is
an improvement of more than 25% with respect to traditional methods [142][143].
The e↵ective synchronization validation between the input and the output signals is
performed by the developed software framework which compares the data achieved
during the experimental analysis with the expected ideal values.

The main contribution of this work is to provide at the developers of the auto-
motive applications a precise and flexible validation platform, useful to check the
correctness of the developed software routines, thus ensuring an e�cient system
development. Moreover, using this platform it is possible to check the function-
ing of the real microcontroller, avoiding the unexpected misbehaviors due to the
model-based validation of the developed applications.

5.3 Timer modules in Automotive applications

The today automotive microcontrollers contain specific timer modules to manage
the engine signals. In Figure 5.1, the most important signals related to the cylinders
fuel injection are shown. All the main tasks performed by the automotive micro-
controllers are based on a precise detection of the engine angular position (i.e., the
precise position of the cylinders with respect to the crankshaft). This is done us-
ing the two reference signals coming from the engine, i.e., the crankshaft and the
camshaft. The crankshaft, typically, is a square wave signal, where each falling
edge transition represents a partial rotation of the crankshaft. For example, if the
crankshaft phonic wheel [148] is composed of 60 teeth, each falling edge transition of
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work addressing the generation of a flexible and low-cost 
validation platform for the today automotive microcontrollers. 

The main contribution of this work is to provide at the 
developers of the automotive applications a precise and 
flexible validation platform, useful to check the correctness of 
the developed software routines, thus ensuring an efficient 
system development. Moreover, using this platform it is 
possible to check the functioning of the real  microcontroller, 
avoiding the unexpected misbehaviors due to the model-based 
validation of the developed applications. 

III. TIMER MODULES IN AUTOMOTIVE APPLICATIONS 
The today automotive microcontrollers contain specific 

timer modules to manage the engine signals. In Fig.1, the most 
important signals related to the cylinders fuel injection are 
shown. All the main tasks performed by the automotive 
microcontrollers are based on a precise detection of the engine 
angular position (i.e., the precise position of the cylinders with 
respect to the crankshaft). This is done using the two reference 
signals coming from the engine, i.e., the crankshaft and the 
camshaft. The crankshaft, typically, is a square wave signal, 
where each falling edge transition represents a partial rotation 
of the crankshaft. For example, if the crankshaft phonic wheel 
[20] is composed of 60 teeth, each falling edge transition of 
the crankshaft signal indicates a rotation of 6°. Moreover, in a 
determinate position of the crankshaft signal, a gap (i.e., a 
missing tooth) is present: this gap is used as reference point to 
understand the correct engine angular position [25]. On the 
other side, the camshaft is a signal composed of few pulses 
synchronized with the crankshaft. Since the engines addressed 
in the context of this paper are 4-stroke engines, the complete 
4-stroke sequence (i.e., intake, compression, power, and 
exhaust) takes two full rotations of the crankshaft. By only 
looking at the crankshaft signal, there is no way to understand 
if the crank is on its intake-compression rotation or on its 
power-exhaust rotation. To get this information, the camshaft 
signal is required; moreover, due to the 4-stroke configuration, 
the camshaft rotates at half the crankshaft speed (a rotation of 
360° of the camshaft implies a rotation of 720° of the 
crankshaft); consequently, a signal generated once per rotation 
of the camshaft is sufficient to supply the required 
information. According to the features of these signals, the 
Top Dead Cylinder Center (TDCC) for each considered 
cylinder is identified [21]. The fuel injection pulses are 
electronic pulses that act on the fuel injector of each cylinder. 
These pulses have to be generated in a very precise angular 
position, where the reference point is the TDCC. The range in 
which these pulses can be generated is called Injection 
Window (IW); typically, the width of the IW is 360°. In the 

context of this paper, we consider a maximum number of 
injection pulses equal to 16. The angular position of the 
beginning of an injection pulse is called Start Of Injection 
(SOI), or Start Angle; moreover, the injection pulses can be 
programmed using a temporal displacement between them 
(Dwell). Finally, in the typical automotive applications, timer 
modules generate, also, a sequence of high frequency pulse 
width modulation (PWM) pulses, in order to trigger other 
engine sensors. 

The generation of the fuel injection pulses is not the main 
goal of this paper and,   consequently,  we   don’t   explain   other  
details about this topic. The method proposed in the next 
section is focused on the verification of the precision and of 
the synchronization of the generation of the fuel injection 
pulses.  

IV. THE PROPOSED VALIDATION PLATFORM 
The main purposes of the proposed platform are generate 

the engine reference signals, and acquire the fuel injection 
pulses, generated by the microcontroller under test, correlated 
with the provided engine reference signals themselves. In Fig. 
2 the overview of the proposed validation behavior is shown. 
It is composed of the FPGA-based validation platform and of 
the external controlling computer.  

The validation platform is composed of the 32-bit Xilinx 
MicroBlaze processor core [22] and of a set of special purpose 
DSP peripherals designed to support the validation of the 
signals generated by the timer module under test. Both the 
MicroBlaze processor and the DSPs are implemented in a 
FPGA device. The communication between the processor and 
the DSP are managed using a Processor Local Bus (PLB) 
interface. An external controlling computer is directly 
connected to the processor, in order to provide the input 
parameters required to the generation of the engine signals. 
Moreover, a RS232 interface is used to save the acquired data 
into a database contained in the external computer itself. 

Two are the most important DSP peripherals developed in 
this context: the crank/cam generator which consists on the 
module used to generate the crankshaft and the camshaft 
signals according to the user parameters, and the measurement 
module which samples and stores the signals provided by the 
timing module under test.  

A. The Crankshaft and Camshaft DSP peripheral 
In Fig. 3 the composition of the crankshaft and camshaft 

DSP peripheral is shown. It is composed of three main sub-
modules: clock_div, selector_crank, and selector_cam. The 
goal of this peripheral is to generate the crankshaft and 
camshaft signals in two different ways, according to the user 
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Fig. 1. Example of the main signals received and managed by the automotive timer modules, in order to efficiently supervise the engine behavior. 
Figure 5.1. Example of the main signals received and managed by the automotive
timer modules, in order to e�ciently supervise the engine behavior.

the crankshaft signal indicates a rotation of 6°. Moreover, in a determinate position
of the crankshaft signal, a gap (i.e., a missing tooth) is present: this gap is used
as reference point to understand the correct engine angular position [153]. On the
other side, the camshaft is a signal composed of few pulses synchronized with the
crankshaft. Since the engines addressed in the context of this research work are 4-
stroke engines, the complete 4-stroke sequence (i.e., intake, compression, power, and
exhaust) takes two full rotations of the crankshaft. By only looking at the crankshaft
signal, there is no way to understand if the crank is on its intake-compression rota-
tion or on its power-exhaust rotation. To get this information, the camshaft signal
is required; moreover, due to the 4-stroke configuration, the camshaft rotates at
half the crankshaft speed (a rotation of 360° of the camshaft implies a rotation of
720° of the crankshaft); consequently, a signal generated once per rotation of the
camshaft is su�cient to supply the required information. According to the features
of these signals, the Top Dead Cylinder Center (TDCC) for each considered cylin-
der is identified [149]. The fuel injection pulses are electronic pulses that act on the
fuel injector of each cylinder. These pulses have to be generated in a very precise
angular position, where the reference point is the TDCC. The range in which these
pulses can be generated is called Injection Window (IW); typically, the width of the
IW is 360°. In the context of this research work, the maximum number of injection
pulses is equal to 16. The angular position of the beginning of an injection pulse
is called Start Of Injection (SOI), or Start Angle; moreover, the injection pulses
can be programmed using a temporal displacement between them (Dwell). Finally,
in the typical automotive applications, timer modules generate, also, a sequence
of high frequency pulse width modulation (PWM) pulses, in order to trigger other
engine sensors. The generation of the fuel injection pulses is not the main goal of
this research work: the method proposed in the next section, in fact, is focused on
the verification of the precision and of the synchronization of the generation of the
fuel injection pulses.
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5.4 Proposed validation platform

The main purposes of the proposed platform are generate the engine reference sig-
nals, and acquire the fuel injection pulses, generated by the microcontroller under
test, correlated with the provided engine reference signals themselves. In Figure 5.2
the overview of the proposed validation behavior is shown. It is composed of the
FPGA-based validation platform and of the external controlling computer.

The validation platform is composed of the 32-bit Xilinx MicroBlaze proces-
sor core [150] and of a set of special purpose DSP peripherals designed to support
the validation of the signals generated by the timer module under test. Both the
MicroBlaze processor and the DSPs are implemented in a FPGA device. The com-
munication between the processor and the DSP are managed using a Processor Local
Bus (PLB) interface. An external controlling computer is directly connected to the
processor, in order to provide the input parameters required to the generation of the
engine signals. Moreover, a RS232 interface is used to save the acquired data into a
database contained in the external computer itself.

Two are the most important DSP peripherals developed in this context: the
crank/cam generator which consists on the module used to generate the crankshaft
and the camshaft signals according to the user parameters, and the measurement
module which samples and stores the signals provided by the timing module under
test.

5.4.1 Crankshaft and Camshaft DSP peripheral

In Figure 5.3 the composition of the crankshaft and camshaft DSP peripheral is
shown. It is composed of three main sub-modules: clock div, selector crank, and
selector cam. The goal of this peripheral is to generate the crankshaft and camshaft
signals in two di↵erent ways, according to the user requirements: in the former, the
signals have to emulate the signals of an engine running with constant rounds per
minutes (rpm), while in the second case these signals have to emulate the dynamic
behavior of an engine, i.e., non-constant rpm.

The clock div sub-module receives in input from the MicroBlaze processor (through
the use of slave registers) the 32-bit values Delta period and Num cycles ; the former
is a timeout value (expressed in number of clock cycles) in which the period of the
crankshaft teeth has to remain constant. When this time is elapsed, the request sig-
nal is raised in order to communicate at the MicroBlaze processor (through the use
of an interrupt) that the new speed parameters can be sent; this mechanism allows
to generate dynamic or static crankshaft and camshaft signals. The second value
received by the peripheral (i.e., Num cycles) represents, instead, the actual speed of
the engine: in particular, it is the duration, expressed in number of clock cycles, of
half period of the crankshaft signal. The internal circuitry (i.e., the selector crank
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Figure 5.2. The overview of the proposed validation platform.

sub-module) causes a toggle of the output crankshaft signal every Num cycles clock
cycles. A similar approach is used to generate the output camshaft signal: the signal
Cam Enable 2, generated by the selector crank sub-module, reports at the selector
cam sub-module when toggle the output camshaft signal. This has been done to en-
sure a very precise synchronization between the crankshaft and the camshaft signals
generated by this peripheral

5.4.2 Measure DSP peripheral

The measure peripheral receives in input the injection pulses and the PWM pulses
signals, both generated by the timer module under test; using as absolute reference
the crankshaft and the camshaft signals (generated by the specific peripheral ex-
plained in the previous section) it performs the required measurements of the input
signals. This peripheral is able to measure the signals of one cylinder at a time.

In Figure 5.4, the main sub-modules composing the measure DSP peripheral are
shown. The sampling window sub-module triggers the other two sub-modules: it
receives in input (TDC ang signal) from the MicroBlaze processor (through the use
of a slave register) the number of the crankshaft tooth falling edge corresponding
to the angular value of the TDCC referred to the cylinder to be monitored. It also
receives in input the crankshaft signal generated by the other peripheral (crank cont
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Figure 5.3. The crankshaft and camshaft generator peripheral.

signal). By counting the falling edges of the crankshaft signal, the sampling window
sub-module is able to produce in output the sampling signal, that remains active
(i.e., logic value equal to 1) for 360° according to the programmed cylinder. This
signal is connected to the pulse measure and to the PWM measure sub-modules, in
which it is used as ”clear” signal for the internal counters.

The pulses measure sub-module counts the number of incoming pulses (injection
pulses signal) and exploiting a couple of latches, it stores in a set of internal signals
the time stamps at which the rising and falling edges occur. To do this, an internal
counter is used, where the frequency of the counter itself is the same of the frequency
of the clk signal; moreover, this counter is reset at the beginning of each injection
window. As soon as the sampling signal becomes 0, all the stored results are trans-
ferred to the respective 512-bit outputs. The length of the output signals is due to
the fact that inside a programming window, there should be at most 16 injection
pulses; consequently, 16 parameters have to stored, each one represented with 32
bit. The output data of this sub-module are: (1) angle measure, which contains the
measured start angle time stamps of the injection pulses; (2) dwell which contains
the measured time between the current pulse and the previous one; (3) num pulses,
which indicates the total number of detected pulses inside the injection window;
(4) width, which contains the measured time duration of each injection pulse; and
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Figure 5.4. The measure peripheral.

(5) data valid, that signals when all the measured values have been copied in the
output signals; this value is used to signal at the MicroBlaze processor (through an
interrupt) that the current data could be transferred in the SDRAM.

A similar approach has been used for the PWM measure module, in which the
features of the PWM signal generated by the timer module under test are measured.
This module is activated in a particular point of the IW, depending on the auto-
motive application under analysis. The output data of this module are: (1) o↵set,
which contains the measured o↵set between a determinate point within the IW (e.g.,
the TDC) and the first PWM rising edge; (2) train, which contains the measured
PWM train duration (in terms of number of clock cycles), from the first rising edge
to the last falling edge; and (3) num pwm, which contains the number of counted
PWM pulses.

5.4.3 Xilinx MicroBlaze processor tasks

Considering the special purpose peripherals described in the previous sections, the
MicroBlaze processor has three main tasks. The first is to provide the crankshaft
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and camshaft generator peripheral with the data about the features of the camshaft
and crankshaft signals that have to be generated, i.e., the crankshaft period and the
dynamic of the crankshaft signal itself. The second performed task is, whenever the
data valid signal is received from the measure peripheral, transfer the acquired data
(contained in the output signals of the measure peripheral) into the SDRAM; this
allows to acquire the same data (about the fuel injection and the PWM signals) in
di↵erent time instants, in order to characterize in a very precise way the measured
signals produced by the microcontroller under test. Finally, when the required
number of measurements have been acquired, the MicroBlaze processor takes care
of sending (through a RS232 interface) the data contained in the SDRAM at the
external controlling computer.

5.4.4 Output data format

All the measurements acquired by the peripherals described in the above sections
are based on temporal intervals and are contained in a file called data raw.txt.

Since the main purpose of the proposed validation platform is to verify the
synchronization of the fuel injection pulses with respect to the engine reference
signals, the acquired data (about the pulses start angle) have to be translated from
the FPGA time domain (i.e., the number of clock cycles measured by the peripheral)
to the engine angle domain. To do this, the following Formula 5.1 has been used,
where 6 are the degrees of each crank falling edge transition, and RPM are the
current rounds-per-minute of the engine. Clearly, this formula can be used in the
case of constant engine rpm; in case of dynamic engine behavior, the formula has to
take in consideration the di↵erent RPM values during the measurements interval.

StartAngle[deg] =
(6 ⇤ StartAngle[ClockCycleNum] ⇤RPM

ClockCyclePeriod[s]
(5.1)

5.5 Experimental results

In Figure 5.5 the experimental flow is shown. A Matlab parser translates the data
acquired by the proposed validation platform. Then, these data are compared with
the file containing the expected values (called ideal values.txt); this file is generated
by an ideal data generator written in C language. As a result, several report files are
obtained; these files contain the details about the measures, including the average
error, the maximum error and the standard deviation of each feature of each injection
pulse generated by the timer module under test. As case study, two timer modules
have been used: the eTPU and the GTM; in the following section the main features
of these modules and the obtained measurements results are shown.

106



5 – An industrial demonstration: test and validation of an automotive timing multicore co-processor module

!
Figure 5.5. The experimental flow.

5.5.1 Use Case: the Enhanced Time Processor Unit (eTPU)

The Enhanced Time Processor Unit (eTPU) [144][145] by Freescale, is an e↵ective
timing co-processor available in the automotive domain; it is used to e�ciently
manage I/O processing in advanced microcontroller units. From a high level point
of view, the eTPU has the characteristics of both a peripheral and a processor, tightly
integrated between each other [151]; essentially, it is an independent microcontroller
designed for timing control, I/O handling, serial communications, and engine control
applications [145]. More in particular, the eTPU is mainly used to decode the engine
angular position, and, consequently, to control actuators such as the fuel injectors
and the spark plugs, thanks to the high flexibility of the dedicated programmable
hardware.

In the context of this research work, the eTPU module embedded in the mi-
crocontroller SPC5644AM has been used; moreover, the automotive functions set
available in [152] has been used.

5.5.2 Use Case: Generic Timer Module (GTM)

The Generic Timer Module (GTM) [146] is a recent hardware module provided by
Bosch. It is composed of many sub-modules with di↵erent functionalities. These
sub-modules can be interconnected together in a configurable manner in order to
obtain a flexible timer module for di↵erent application domains. The scalability
and configurability is reached by means of the architectural structure of the module
itself: a set of dedicated sub-modules is placed around a central routing unit, which
is able to interconnect the sub-modules according to the programmed configuration
specified in the running software [146]. The GTM is designed to run with a minimal
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CPU interaction and to unload the CPU itself from handling frequent interrupts
service requests.

In the context of this research work, the GTM module embedded in the mi-
crocontroller SPC574K72 has been used; moreover, a set of automotive functions
useful to generate the fuel injection pulses using only the GTM module has been
implemented for this scope.

5.5.3 The used Xilinx FPGA board

In order to implement the proposed validation platform, the Xilinx Virtex-5 XC5VL
X50T FPGA has been used. This FPGA is embedded in a Digilent Genesys board.
The working frequency of the MicroBlaze processor implemented in the FPGA itself
in 100MHz; also the clock frequency provided at the special purpose peripherals is
100MHz. This allows us to obtain time measurements with a precision of 10ns, and
angular measurements with a precision of 10�5 degrees.

5.6 Main obtained results

The main purpose of this section is to give the reader an idea of the e↵ective features
of the proposed validation platform, highlighting its capability of making measures
with a very high degree of precision.

In Figure 5.6 two graphs are shown: the first (a) reports the measurements of
the width of an injection pulse, while the second (b) shows the measurements of the
PWM o↵set; in this case the module under test is the GTM.

In Figure 5.7 a graph reporting the measurements of the start angle of an injec-
tion pulse generated by the eTPU module is shown. By looking at this graph, it
is possible to understand if the injection pulse is generated in the correct position,
i.e., in a determinate angle position, according to the crankshaft and the camshaft
signals. In this case, the precision of the measurements is 10�5 degrees.

As it is possible to notice by the graphs reported in this section, using the pro-
posed validation platform it is possible to understand if the injection pulses are
correctly generated. This allows to understand if the software applications run-
ning in the considered timer modules are correct (ensuring a real-time behavior)
or contain software bugs. Using this platform, thus, the developers of automotive
applications can verify if the applications that they are writing e�ciently manage
the fuel injectors.

As a conclusion of this research activity, in this research work a new platform for
the validation of timer modules used in automotive applications has been proposed.
The high flexibility, combined with the capability of extreme precise measurements,
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in the running software [18]. The GTM is designed to run with 
a minimal CPU interaction and to unload the CPU itself from 
handling frequent interrupts service requests. 

In the context of this paper, we used the GTM module 
embedded in the microcontroller SPC574K72; moreover, we 
directly implemented a set of automotive functions useful to 
generate the fuel injection pulses using only the GTM module. 

C. The used Xilinx FPGA board 
In order to implement the proposed validation platform, 

the Xilinx Virtex-5 XC5VLX50T FPGA has been used. This 
FPGA is embedded in a Digilent Genesys board. The working 
frequency of the MicroBlaze processor implemented in the 
FPGA itself in 100MHz; also the clock frequency provided at 
the special purpose peripherals is 100MHz. This allows us to 
obtain time measurements with a precision of 10ns, and 
angular measurements with a precision of 10-5 degrees. 

D. Main obtained results 
 The main purpose of this section is to give the reader an 

idea of the effective features of the proposed validation 
platform, highlighting its capability of making measures with 
extreme precision.  

In Fig. 6 two graphs are shown: the first (Fig. 6.a) reports 
the measurements of the width of an injection pulse, while the 
second (Fig. 6.b) shows the measurements of the PWM offset; 
in this case the module under test is the GTM. In Fig. 7 a 
graph reporting the measurements of the start angle of an 
injection pulse generated by the eTPU module is shown. By 
looking at this graph, it is possible to understand if the 
injection pulse is generated in the correct position, i.e., in a 
determinate angle position, according to the crankshaft and the 
camshaft signals. In this case, the precision of the 
measurements is 10-5 degrees. 

As it is possible to notice by the graphs reported in this 
section, using the proposed validation platform it is possible to 
understand if the injection pulses are correctly generated. This 
allows to understand if the software applications running in 

the timer module are correct (ensuring a real-time behavior) or 
contain software bugs. Using this platform, thus, the 
developers of automotive applications can verify if the 
applications that they are writing efficiently manage the fuel 
injectors. 

VI. CONCLUSIONS AND FUTURE WORKS 
In this paper we present a new platform for the validation of 

timer modules used in automotive applications. The high 
flexibility, combined with the capability of extreme precise 
measurements, make the platform very suitable to be used by 
the developers of automotive applications during the software 
development. As case study, we used two important timer 
modules employed in the today vehicles.  

As future work, we plan to extend the proposed FPGA-
platform in order to inject faults in the input signals provided 
at the timer module under test, checking the correctness and 
the synchronization of the generated output signals. 
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In this paper we present a new platform for the validation of 

timer modules used in automotive applications. The high 
flexibility, combined with the capability of extreme precise 
measurements, make the platform very suitable to be used by 
the developers of automotive applications during the software 
development. As case study, we used two important timer 
modules employed in the today vehicles.  

As future work, we plan to extend the proposed FPGA-
platform in order to inject faults in the input signals provided 
at the timer module under test, checking the correctness and 
the synchronization of the generated output signals. 

ACKNOWLEDGMENTS 
We would like to thanks Nicolò Macera and Lorenzo Venditti 
for the execution of the last experiments related to the 
development of this validation platform.  

REFERENCES 
[1] E.  Armengaud,  A.  Steininger,  M.  Horauer,  “Towards  a  Systematic  Test  

for Embedded Automotive Communication Systems,” IEEE 
Transactions on Industrial Informatics, vol. 4, n.3, 2008. 

[2] M. Steger, C. Tischer, B. Boss, A. Muller, O. Pertler, W. Stolz, S. Feber, 
“Introducing PLA at Bosch Gasoline Systems: Experiences and 
Practices,” Springer Software Procuct Lines, Lecture Notes in Computer 
Science, vol. 3154, pp. 34 – 50, 2004. 

[3] Y. Kanehagi, D. Umeda, A. Hayashi, K. Kimura, H. Kasahara, 
“Parallelization of automotive engine control software on embedded 
multi-core processor using OSCAR compiler,” IEEE Cool Chips XVI, p. 
1 – 3, 2013. 

[4] F. Juan, M. Xian-Min,   “Research   on   fuel   injection   intelligent   control  
system,” IEEE Conference on Industrial Electronics and Applications 
(ICEA), pp. 2782 – 2785, May 2009.  

[5] A.D.  Grasso,  S.  Pennisi,  M.  Paparo,  D.  Patti,  “Estimation  of  in-cylinder 
pressure using spark plug discharge current measurements,” European 
Conference on Circuit Theory and Design (ECCTD), pp. 1 – 4, 2013. 

[6] F.   Ostman,   H.T.   Toivonen,   “Adaptive   Cylinder   Balancing   of   Internal  
Combustion Engines,” IEEE Transacrions on Control System 
Technology, vol. 19, n. 4, pp. 782 – 791, 2011. 

[7] I. Haskara, W. Yue-Yun,   “Cylinder Pressure-Based Combustion 
Controls for Advanced Diesel Combustion With Multiple-Pulse Fuel 
Injection,”  IEEE  Transactions  on  Control  Systems  Technology,  vol.  21,  
n. 6, pp. 2143 – 2155, 2013. 

[8] Q.  Lui,  H.  Chen,  Y.  Hu,  P.  Sun,  J.  Li,  “Modeling  and  Control  of  the  Fuel  
Injection System for Rail Pressure Regulation in GDI Engine,” 
IEEE/ASME Transactions on Mechatronics, vol. 19, n.5, pp. 1501 – 
1513, 2014. 

[9] J.   Larimore,   E.   Hellstrom,   S.   Jade,   J.   Li,   “Controlling Combustion 
Phasing Variability with Fuel Injection Timing In a Multicylinder HCCI 
Engine,” American Control Conference (ACC), pp. 4435 – 4440, 2013. 

[10] T.   A.   Johansen,   O.   Egeland,   E.   A.   Johannessen,   R.   Kvamsdal,   “Free-
piston diesel engine timing and control - toward electronic cam- and 
crankshaft,” IEEE Transactions on Control System Technology, vol. 10, 
n. 2, pp. 177 – 190, 2002. 

[11] S. Hainz, E. Ofner, D.  Hammerschmidt,  T.  Werth,  “Position Detection 
in Automotive Application by Adaptive Inter Symbol Interference 
Removal,”  IEEE  5th conference on Sensors, pp. 1103 – 1106, 2006. 

    
(a)                      (b) 

Fig. 6. Measures of injection pulse width (a), and of the PWM offset 
(b); both the signals are generated by the GTM. 

 
Fig. 7. Measures of the Start Angle of an injection pulse generated by 

the eTPU module. Figure 5.7. Measures of the Start Angle of an injection pulse generated
by the eTPU module.

make the platform very suitable to be used by the developers of automotive applica-
tions during the software development. As case study, two important timer modules
employed in the today vehicles have been used.
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Chapter 6

Conclusions

Nowadays, integrated electronic systems are more and more used in a wide number
of applications and environments, ranging from low cost to safety critical products.
This wide distribution is mainly due to the miniaturization surrounded by an in-
creasing computing power of semiconductor devices. Among the di↵erent challenges
associated to this phenomena, the reliability of electronic systems is becoming more
and more relevant.

In this PhD thesis, several reliability techniques have been proposed. The com-
mon thread of these techniques is that they have been developed addressing mul-
ticore processor units. In particular, new methods have been generated addressing
VLIW processors, GPGPUs, and the Generic Timer Module (GTM) by Bosch.

Considering VLIWs processors, new test and diagnostic methods have been stud-
ied and implemented in order to detect and localize permanent faults; they are
mainly based on the Software-Based Self-Test (SBST) technique. The obtained
results show that with the proposed methods it is possible to decrease the time
required to perform the test of a generic VLIW processor, and to e�ciently localize
the faulty module.

In the GPGPUs context, instead, the e↵ects introduced by soft errors have been
analyzed; this works have been done through the execution of three di↵erent neutron
radiation tests. The gathered data provide several interesting suggestion about the
configuration of the applications running in the GPGPU embedded in safety critical
environments.

As industrial case, the test and the validation of a timing multicore co-processor
module used in the today Electronic Control Units (ECUs) have been designed and
implemented. More in particular, an FPGA-based validation platform has been
developed. The main feature of this low cost device is the ability to e�ciently
verify the functioning of the timing module under test, thus ensuring a correct
implementation of the software routines running on it. This work has been done in
collaboration with General Motors Powertrain Europe (Turin).
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6 – Conclusions

Concluding, novel algorithms for reliability characterization of multicore pro-
cessing units have been developed; moreover, several results, never appeared in the
literature before, have been proposed as a proof of the goodness of the proposed
methods.
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Appendix A

List of published papers

In this PhD thesis, several reliability challenges have been addressed. The most im-
portant results are described in several papers published in conference proceedings,
book chapters, and international journals. In this section the complete list of that
papers is presented.

• Journal Paper

1. Sabena D., Sonza Reorda M., Sterpone L., On the Automatic Genera-
tion of Optimized Software-Based Self-Test Programs for VLIW Proces-
sors, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
ISSN 1063-8210, vol. 22, n. 4, pp. 813-823, April 2013.

2. Sabena D., Sonza Reorda M., Sterpone L., Rech P., Carro L., Evaluating
the radiation sensitivity of GPGPU caches: New algorithms and experi-
mental results, Microelectronics Reliability, ISSN 0026-2714, vol. 54, n.
11, pp. 2621 - 2628, November 2014.

3. Sabena D., Sterpone L., Carro L., Rech P., Reliability Evaluation of Em-
bedded GPGPUs for Safety Critical Applications, IEEE Transactions on
Nuclear Science, ISSN 0018-9499, vol. 61, n. 6, pp. 3123 - 3129, Decem-
ber 2014.

• Book Chapter

1. Sabena D., Sterpone L., Sonza Reorda M., On the Automatic Generation
of Software-Based Self-Test Programs for Functional Test and Diagno-
sis of VLIW Processors, VLSI-SoC: From Algorithms to Circuits and
System-on-Chip Design, Springer Berlin Heidelberg, pp. 162-180, 2013.
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A – List of published papers

• Conference Proceedings Paper

1. De Carvalho M., Sabena D., Sonza Reorda M., Sterpone L., Rech P.,
Carro L., Fault Injection in GPGPU Cores to Validate and Debug Robust
Parallel Applications, IEEE 20th International On-Line Testing Sympo-
sium (IOLTS), Platja d’Aro, pp. 210-211, July 2014,

2. Sabena D., Sterpone L., Schölzel M., Koal T., Vierhaus H.T., Wong S.,
Glein R., Rittner F., Stender C., Porrmann M., Hagemeyer J., Recon-
figurable High Performance Architectures: How much are they ready for
safety-critical applications, 19th IEEE European Test Symposium (ETS),
Paderborn, pp. 175-182, May 2014.

3. Sabena D., Sonza Reorda M., Sterpone L., Soft Error E↵ects Analysis
and Mitigation in VLIW Safety-Critical Applications, IFIP/IEEE 22nd
International Conference on Very Large Scale Integration (VLSI-SoC),
pp. 135-140, October 2014.

4. Sterpone L., Sabena D., Ullah A., Porrmann M., Hagemeyer J., Ilstad J.,
Dynamic Neutron Testing of Dynamically Reconfigurable Processing Mod-
ules Architecture, IEEE NASA/ESA Conference on Adaptive Hardware
and System (AHS), pp. 184-188, June 2013.

5. Sabena D., Sonza Reorda M., Sterpone L., On the development of diag-
nostic test programs for VLIW processors, 21st IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), pp. 87-92, Oc-
tober 2013.

6. Sabena D., Sonza Reorda M., Sterpone L., Rech P., Carro L., On the
evaluation of soft-errors detection techniques for GPGPUs, 8th IEEE In-
ternational Design and Test Symposium (IDT), pp.16-18, December 2013.

7. L. Sterpone, D. Sabena, M. Sonza Reorda, A New Fault Injection Ap-
proach for Testing Network-on-Chips, International Conference on Par-
allel, Distributed and network-based Processing (PDP), pp. 530-535,
February 2012.

8. L. Sterpone, D. Sabena, M. Sonza Reorda, A New SBST Algorithm for
Testing the Register File of VLIW Processors, IEEE Design, Automation
and Test in Europe (DATE), pp. 412 -417, March 2012.

9. Sabena D., Sonza Reorda M., Sterpone L., On the development of Software-
Based Self-Test methods for VLIW processors, IEEE International Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) Sym-
posium, pp. 25-30, October 2012.

10. Sabena D., Sonza Reorda M., Sterpone L., On the optimized generation
of Software-Based Self-Test programs for VLIW processors, IEEE/IFIP
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A – List of published papers

20th International Conference on VLSI and System-on-Chip (VLSI-SoC),
pp. 129-134, October 2012.

11. L. Sterpone, D. Sabena, S. Campagna, M. Sonza Reorda, Fault Injection
Analysis of Transient Faults in Clustered VLIW Processors, 14th IEEE
Symposium on Design and Diagnostics of Electronic Circuits and Systems
(DDECS), pp. 207-212, April 2011.
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Appendix B

Abbreviations

The following list describes the significance of various abbreviations and acronyms
used throughout this PhD thesis.

ADAS Advance Driver Assistance System

ATE Automatic Test Equipment

BIST Built-In Self-Test

CD Computational Domain

COB Cost of Build

CPU Central Processing Unit

DfT Design for Test

DSP Digital Signal Processing

DUT Device Under Test

ECU Electronic Control Unit

FPGA Field Programmable Gate Array

FU Functional Unit

GPGPU General Purpose Graphic Processing Unit

GPU Graphic Processing Unit
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B – Abbreviations

GTM Generic Timer Module

HPC High Performance Computing

ILP Instruction Level Parallelism

JTAG Joint Test Action Group

ISA Instruction Set Architecture

POST Power-On Self-Test

SIMD Single Instruction Multiple Data

SoC System on Chip

SBST Software Based Self Test

SRAM Static Random Access Memories

VLIW Very Long Instruction Word

VLSI Very Large Scale Integration
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